V. Crombez, S. Rohais, F. Baudin, B. Chauveau, T. Euzen, D. Granjeon
{"title":"烃源岩发育的控制因素:加拿大西部沉积盆地三叠系沉积三维地层模拟的启示","authors":"V. Crombez, S. Rohais, F. Baudin, B. Chauveau, T. Euzen, D. Granjeon","doi":"10.1051/BSGF/2017188","DOIUrl":null,"url":null,"abstract":"The recent development of unconventional resources has triggered a regain of interest for source-rocks. The presence of hydrocarbons in these unconventional systems is generally associated with organic-rich sediments. This study aims at better understanding the factors controlling the accumulation of marine organic matter at basin scale, using a process-based approach. This work focuses on the Montney, Doig and Halfway Formations (Lower and Middle Triassic, Alberta and British Columbia, Canada). Recent studies show that the Triassic strata of the Western Canada sedimentary basin can be considered as a transitional period between the Paleozoic passive margin and the Jurassic foreland basin. Based on a 3D regional stratigraphic architecture and on a description of the organic rich interval distribution, a process-based numerical model (DionisosFlow and DORS) has been used to simulate the stratigraphic evolution of the Montney, Doig and Halfway Formations and reproduce the organic distribution in these formations. This modeling approach allowed us to test different scenarios of primary productivity and basin restriction and discuss the regional controls on organic matter accumulation such as dynamic of anoxia or dilution of organic matter by detrital sediments. The reconstruction of the stratigraphic architecture emphasizes a major drop of the water discharge in the basin. In the absence of any evidence supporting a link with a climate change, the drop in water discharge suggests a major modification of the drainage area of the basin, potentially associated with the early stage of the cordilleran orogeny and foreland basin evolution. The numerical simulation also shows that the primary productivity rates in the Montney and Doig Formations are characteristic of a coastal area and that a basin restriction is required to account for the level of anoxia observed in the studied Formations. Lastly, this study investigates the regional controls on organic matter accumulation and emphasizes the impact of regional paleogeographic and geodynamic evolution on the dynamic of anoxia and on the dilution.","PeriodicalId":55978,"journal":{"name":"Bulletin de la Societe Geologique de France","volume":"86 1","pages":"30"},"PeriodicalIF":2.6000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Controlling factors on source rock development: implications from 3D stratigraphic modeling of Triassic deposits in the Western Canada Sedimentary Basin\",\"authors\":\"V. Crombez, S. Rohais, F. Baudin, B. Chauveau, T. Euzen, D. Granjeon\",\"doi\":\"10.1051/BSGF/2017188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recent development of unconventional resources has triggered a regain of interest for source-rocks. The presence of hydrocarbons in these unconventional systems is generally associated with organic-rich sediments. This study aims at better understanding the factors controlling the accumulation of marine organic matter at basin scale, using a process-based approach. This work focuses on the Montney, Doig and Halfway Formations (Lower and Middle Triassic, Alberta and British Columbia, Canada). Recent studies show that the Triassic strata of the Western Canada sedimentary basin can be considered as a transitional period between the Paleozoic passive margin and the Jurassic foreland basin. Based on a 3D regional stratigraphic architecture and on a description of the organic rich interval distribution, a process-based numerical model (DionisosFlow and DORS) has been used to simulate the stratigraphic evolution of the Montney, Doig and Halfway Formations and reproduce the organic distribution in these formations. This modeling approach allowed us to test different scenarios of primary productivity and basin restriction and discuss the regional controls on organic matter accumulation such as dynamic of anoxia or dilution of organic matter by detrital sediments. The reconstruction of the stratigraphic architecture emphasizes a major drop of the water discharge in the basin. In the absence of any evidence supporting a link with a climate change, the drop in water discharge suggests a major modification of the drainage area of the basin, potentially associated with the early stage of the cordilleran orogeny and foreland basin evolution. The numerical simulation also shows that the primary productivity rates in the Montney and Doig Formations are characteristic of a coastal area and that a basin restriction is required to account for the level of anoxia observed in the studied Formations. Lastly, this study investigates the regional controls on organic matter accumulation and emphasizes the impact of regional paleogeographic and geodynamic evolution on the dynamic of anoxia and on the dilution.\",\"PeriodicalId\":55978,\"journal\":{\"name\":\"Bulletin de la Societe Geologique de France\",\"volume\":\"86 1\",\"pages\":\"30\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin de la Societe Geologique de France\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1051/BSGF/2017188\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin de la Societe Geologique de France","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1051/BSGF/2017188","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Controlling factors on source rock development: implications from 3D stratigraphic modeling of Triassic deposits in the Western Canada Sedimentary Basin
The recent development of unconventional resources has triggered a regain of interest for source-rocks. The presence of hydrocarbons in these unconventional systems is generally associated with organic-rich sediments. This study aims at better understanding the factors controlling the accumulation of marine organic matter at basin scale, using a process-based approach. This work focuses on the Montney, Doig and Halfway Formations (Lower and Middle Triassic, Alberta and British Columbia, Canada). Recent studies show that the Triassic strata of the Western Canada sedimentary basin can be considered as a transitional period between the Paleozoic passive margin and the Jurassic foreland basin. Based on a 3D regional stratigraphic architecture and on a description of the organic rich interval distribution, a process-based numerical model (DionisosFlow and DORS) has been used to simulate the stratigraphic evolution of the Montney, Doig and Halfway Formations and reproduce the organic distribution in these formations. This modeling approach allowed us to test different scenarios of primary productivity and basin restriction and discuss the regional controls on organic matter accumulation such as dynamic of anoxia or dilution of organic matter by detrital sediments. The reconstruction of the stratigraphic architecture emphasizes a major drop of the water discharge in the basin. In the absence of any evidence supporting a link with a climate change, the drop in water discharge suggests a major modification of the drainage area of the basin, potentially associated with the early stage of the cordilleran orogeny and foreland basin evolution. The numerical simulation also shows that the primary productivity rates in the Montney and Doig Formations are characteristic of a coastal area and that a basin restriction is required to account for the level of anoxia observed in the studied Formations. Lastly, this study investigates the regional controls on organic matter accumulation and emphasizes the impact of regional paleogeographic and geodynamic evolution on the dynamic of anoxia and on the dilution.
期刊介绍:
BSGF - Earth Sciences Bulletin publie plusieurs types de contributions :
1. des articles originaux, couvrant tous les champs disciplinaires des Géosciences, à vocation fondamentale mais également à vocation plus appliquée (risques, ressources);
2. des articles de synthèse, faisant le point sur les avancées dans un domaine spécifique des Géosciences, qu''elles soient méthodologiques ou régionales ;
3. des monographies sur la géologie d’une région donnée, assorties d’informations supplémentaires, cartes, coupes, logs, profils sismiques … publiées en ligne en annexe de l’article ;
4. des articles courts de type « express letter » ;
5. des livrets-guides d’excursion (qui suivront le même processus d’examen éditorial que les articles plus classiques) ;
6. des comptes rendus de campagnes à la mer ;
7. des articles de données géodésiques, géophysiques ou géochimiques, pouvant devenir des articles de référence pouvant conduire à des interprétations ultérieures.
BSGF - Earth Sciences Bulletin constitue également un forum pour les discussions entre spécialistes des Sciences de la Terre, de type comment-reply ou autre. Tous les articles publiés, quelle que soit leur forme, seront accessibles sans frais (articles en Open Access) sur le site de la SGF et sur celui de Geosciences World dans la mesure où les auteurs se seront acquittés d’une contribution de (Article Processing Charges – APC) de 300€ pour les membres de la SGF et 500€ pour les non-membres.