{"title":"填料床除湿系统的除湿效率预测","authors":"Tsair-Wang Chung","doi":"10.1016/0950-4214(94)80007-3","DOIUrl":null,"url":null,"abstract":"<div><p>Liquid desiccant-based dehumidification systems have been widely used to remove water vapour from air in a packed column using different liquid desiccants. The liquid desiccants are usually grouped into two categories: aqueous solutions of inorganic salts and aqueous solutions of organic compounds. In order to design such a desiccant—dehumidification system, correlations of the column performance parameters are necessary. A correlation of column efficiency for different packings and desiccant solutions was developed in this study using lithium chloride (LiCl) as the inorganic salt and triethylene glycol (TEG) as the organic compound. This correlation involves the air and liquid flow rates, air and liquid inlet temperatures, column and packing dimensions, and the equilibrium properties of the desiccant solutions. The correlation was tested for polypropylene Flexi rings, ceramic Berl saddles, glass Raschig rings and polypropylene Pall rings. The average value of the errors between predicted values and experimental data was about 7%.</p></div>","PeriodicalId":12586,"journal":{"name":"Gas Separation & Purification","volume":"8 4","pages":"Pages 265-268"},"PeriodicalIF":0.0000,"publicationDate":"1994-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0950-4214(94)80007-3","citationCount":"94","resultStr":"{\"title\":\"Predictions of moisture removal efficiencies for packed-bed dehumidification systems\",\"authors\":\"Tsair-Wang Chung\",\"doi\":\"10.1016/0950-4214(94)80007-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Liquid desiccant-based dehumidification systems have been widely used to remove water vapour from air in a packed column using different liquid desiccants. The liquid desiccants are usually grouped into two categories: aqueous solutions of inorganic salts and aqueous solutions of organic compounds. In order to design such a desiccant—dehumidification system, correlations of the column performance parameters are necessary. A correlation of column efficiency for different packings and desiccant solutions was developed in this study using lithium chloride (LiCl) as the inorganic salt and triethylene glycol (TEG) as the organic compound. This correlation involves the air and liquid flow rates, air and liquid inlet temperatures, column and packing dimensions, and the equilibrium properties of the desiccant solutions. The correlation was tested for polypropylene Flexi rings, ceramic Berl saddles, glass Raschig rings and polypropylene Pall rings. The average value of the errors between predicted values and experimental data was about 7%.</p></div>\",\"PeriodicalId\":12586,\"journal\":{\"name\":\"Gas Separation & Purification\",\"volume\":\"8 4\",\"pages\":\"Pages 265-268\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0950-4214(94)80007-3\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gas Separation & Purification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0950421494800073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gas Separation & Purification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0950421494800073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predictions of moisture removal efficiencies for packed-bed dehumidification systems
Liquid desiccant-based dehumidification systems have been widely used to remove water vapour from air in a packed column using different liquid desiccants. The liquid desiccants are usually grouped into two categories: aqueous solutions of inorganic salts and aqueous solutions of organic compounds. In order to design such a desiccant—dehumidification system, correlations of the column performance parameters are necessary. A correlation of column efficiency for different packings and desiccant solutions was developed in this study using lithium chloride (LiCl) as the inorganic salt and triethylene glycol (TEG) as the organic compound. This correlation involves the air and liquid flow rates, air and liquid inlet temperatures, column and packing dimensions, and the equilibrium properties of the desiccant solutions. The correlation was tested for polypropylene Flexi rings, ceramic Berl saddles, glass Raschig rings and polypropylene Pall rings. The average value of the errors between predicted values and experimental data was about 7%.