nasicon型固体电解质材料LiGe2(PO4)的计算研究

N. Kuganathan, Kobiny Antony Rex, Poobalasuntharam Iyngaran
{"title":"nasicon型固体电解质材料LiGe2(PO4)的计算研究","authors":"N. Kuganathan, Kobiny Antony Rex, Poobalasuntharam Iyngaran","doi":"10.3390/suschem3030025","DOIUrl":null,"url":null,"abstract":"Phosphate-based electrolyte materials are of great interest in the field of Li-ion batteries due to their rigid structural integrity. LiGe2(PO4)3 is a NASICON-type phosphate material with high thermal and electrochemical stability. Computational simulation techniques were employed to study the defects, diffusion, and dopant properties of LiGe2(PO4)3. Furthermore, the reaction energies for the formation of LiGe2(PO4)3 and the incorporation energies for the insertion of additional Li into this material were calculated. The calculations revealed that the Li Frenkel is the lowest-energy defect. The second most favorable defect is the Ge-P anti-site defect cluster. A low Li migration energy of 0.44 eV implies high Li ionic conductivity. The most favorable isovalent dopants on the Li and Ge sites are Na and Si, respectively. The formation of Li interstitials and oxygen vacancies can be facilitated through the doping of Ga on the Ge site. The doping of Ga slightly enhances the Li ionic conductivity. Li incorporation (up to four Li) is thermodynamically feasible.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computational Investigation of a NASICON-Type Solid Electrolyte Material LiGe2(PO4)3\",\"authors\":\"N. Kuganathan, Kobiny Antony Rex, Poobalasuntharam Iyngaran\",\"doi\":\"10.3390/suschem3030025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Phosphate-based electrolyte materials are of great interest in the field of Li-ion batteries due to their rigid structural integrity. LiGe2(PO4)3 is a NASICON-type phosphate material with high thermal and electrochemical stability. Computational simulation techniques were employed to study the defects, diffusion, and dopant properties of LiGe2(PO4)3. Furthermore, the reaction energies for the formation of LiGe2(PO4)3 and the incorporation energies for the insertion of additional Li into this material were calculated. The calculations revealed that the Li Frenkel is the lowest-energy defect. The second most favorable defect is the Ge-P anti-site defect cluster. A low Li migration energy of 0.44 eV implies high Li ionic conductivity. The most favorable isovalent dopants on the Li and Ge sites are Na and Si, respectively. The formation of Li interstitials and oxygen vacancies can be facilitated through the doping of Ga on the Ge site. The doping of Ga slightly enhances the Li ionic conductivity. Li incorporation (up to four Li) is thermodynamically feasible.\",\"PeriodicalId\":22103,\"journal\":{\"name\":\"Sustainable Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/suschem3030025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/suschem3030025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

磷酸盐基电解质材料因其刚性结构的完整性而受到锂离子电池领域的广泛关注。LiGe2(PO4)3是一种具有高热稳定性和电化学稳定性的nasicon型磷酸盐材料。采用计算模拟技术研究了LiGe2(PO4)3的缺陷、扩散和掺杂性能。此外,还计算了形成LiGe2(PO4)3的反应能和在该材料中插入额外锂的结合能。计算结果表明,Li Frenkel是能量最低的缺陷。第二个最有利的缺陷是Ge-P反位缺陷簇。低锂离子迁移能0.44 eV意味着高锂离子电导率。Li和Ge位点上最有利的同价掺杂剂分别是Na和Si。通过在Ge位点上掺杂Ga,可以促进Li间隙和氧空位的形成。Ga的掺杂略微提高了Li离子的电导率。Li掺入(最多4个Li)在热力学上是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Investigation of a NASICON-Type Solid Electrolyte Material LiGe2(PO4)3
Phosphate-based electrolyte materials are of great interest in the field of Li-ion batteries due to their rigid structural integrity. LiGe2(PO4)3 is a NASICON-type phosphate material with high thermal and electrochemical stability. Computational simulation techniques were employed to study the defects, diffusion, and dopant properties of LiGe2(PO4)3. Furthermore, the reaction energies for the formation of LiGe2(PO4)3 and the incorporation energies for the insertion of additional Li into this material were calculated. The calculations revealed that the Li Frenkel is the lowest-energy defect. The second most favorable defect is the Ge-P anti-site defect cluster. A low Li migration energy of 0.44 eV implies high Li ionic conductivity. The most favorable isovalent dopants on the Li and Ge sites are Na and Si, respectively. The formation of Li interstitials and oxygen vacancies can be facilitated through the doping of Ga on the Ge site. The doping of Ga slightly enhances the Li ionic conductivity. Li incorporation (up to four Li) is thermodynamically feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aqueous Solution of Ionic Liquid Is an Efficient Substituting Solvent System for the Extraction of Alginate from Sargassum tenerrimum The Multifaceted Perspective on the Role of Green Synthesis of Nanoparticles in Promoting a Sustainable Green Economy Recent Progress in Turning Waste into Catalysts for Green Syntheses A Perspective on Solar-Driven Electrochemical Routes for Sustainable Methanol Production Waste Lignocellulosic Biomass as a Source for Bioethanol Production
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1