基于水平集的内镜图像息肉自动分割

Soumayan Dutta, Pradipta Sasmal, M. Bhuyan, Y. Iwahori
{"title":"基于水平集的内镜图像息肉自动分割","authors":"Soumayan Dutta, Pradipta Sasmal, M. Bhuyan, Y. Iwahori","doi":"10.1109/WISPNET.2018.8538615","DOIUrl":null,"url":null,"abstract":"Automatic segmentation of colorectal polyps from endoscopic images forms an interesting challenge in computer vision. The method proposed in this paper intends to segment colorectal polyp (abnormal) regions from normal regions from a given endoscopic image. Due to lack of any regular texture patterns in this kind of images and apparent visual similarity in background and foreground pixels, conventional texture feature extraction and classification methods do not always yield good results. Hence, active contour based method has been explored to automatically segment out probable abnormal region(s). Our aim is to automatically detect the probable polyp region(s) and then verify the results with respect to the ground truth. Due to lack of very definitive edge criteria along the boundaries of a polyp, we used “active contour without edges” instead of classical active contour.","PeriodicalId":6858,"journal":{"name":"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)","volume":"36 9 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automatic Segmentation of Polyps in Endoscopic Image Using Level-Set Formulation\",\"authors\":\"Soumayan Dutta, Pradipta Sasmal, M. Bhuyan, Y. Iwahori\",\"doi\":\"10.1109/WISPNET.2018.8538615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic segmentation of colorectal polyps from endoscopic images forms an interesting challenge in computer vision. The method proposed in this paper intends to segment colorectal polyp (abnormal) regions from normal regions from a given endoscopic image. Due to lack of any regular texture patterns in this kind of images and apparent visual similarity in background and foreground pixels, conventional texture feature extraction and classification methods do not always yield good results. Hence, active contour based method has been explored to automatically segment out probable abnormal region(s). Our aim is to automatically detect the probable polyp region(s) and then verify the results with respect to the ground truth. Due to lack of very definitive edge criteria along the boundaries of a polyp, we used “active contour without edges” instead of classical active contour.\",\"PeriodicalId\":6858,\"journal\":{\"name\":\"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)\",\"volume\":\"36 9 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISPNET.2018.8538615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISPNET.2018.8538615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

从内镜图像中自动分割结肠直肠息肉是计算机视觉领域的一个有趣的挑战。本文提出的方法旨在从给定的内镜图像中分割结肠直肠息肉(异常)区域和正常区域。由于这类图像缺乏任何规则的纹理模式,背景和前景像素具有明显的视觉相似性,传统的纹理特征提取和分类方法往往效果不佳。为此,探索了基于活动轮廓线的自动分割可能异常区域的方法。我们的目标是自动检测可能的息肉区域,然后根据真实情况验证结果。由于缺乏非常明确的沿息肉边界的边缘标准,我们使用“无边缘的活动轮廓”代替经典的活动轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Segmentation of Polyps in Endoscopic Image Using Level-Set Formulation
Automatic segmentation of colorectal polyps from endoscopic images forms an interesting challenge in computer vision. The method proposed in this paper intends to segment colorectal polyp (abnormal) regions from normal regions from a given endoscopic image. Due to lack of any regular texture patterns in this kind of images and apparent visual similarity in background and foreground pixels, conventional texture feature extraction and classification methods do not always yield good results. Hence, active contour based method has been explored to automatically segment out probable abnormal region(s). Our aim is to automatically detect the probable polyp region(s) and then verify the results with respect to the ground truth. Due to lack of very definitive edge criteria along the boundaries of a polyp, we used “active contour without edges” instead of classical active contour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Reinforcement Learning for the Capacitated Vehicle Routing Problem with Soft Time Window Integrated Interference Solutions Between 5G and Satellite Systems Modulation Recognition Method of MAPSK Signal Artificial Intelligence Routing Method in Wireless Sensor Network for Sewage Treatment Monitoring Electromagnetically Induced Transparency in a Coupled NV Spin-Mechanical Resonator System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1