6-羟多巴胺帕金森病模型大鼠纹状体的同步加速器FTIR显微光谱研究

Z. Hongyan, P. Xiao, Wu Ling-yan, Liu Bo, Qi Ze-Ming, Wang Yu-yin
{"title":"6-羟多巴胺帕金森病模型大鼠纹状体的同步加速器FTIR显微光谱研究","authors":"Z. Hongyan, P. Xiao, Wu Ling-yan, Liu Bo, Qi Ze-Ming, Wang Yu-yin","doi":"10.1155/2012/176937","DOIUrl":null,"url":null,"abstract":"In the present study, synchrotron-based Fourier transform-infrared (FTIR) microspectroscopy is used to analyze the biochemical composition of the striatal neurons in normal and Parkinson's disease (PD) rat brain tissues. The rat model of Parkinson's disease is established by destroying the nigrostriatal pathway with 6-hydroxydopamine (6-OHDA). The detailed spectral analyses show the significant changes of cellular compositions such as lipids, and proteins in the striatal neurons of 6-OHDA-lesioned PD rats with respect to control neurons. As a result, the intensities of spectral absorption assigned to lipid of the striatal neurons in PD rats are higher than in control animals. Furthermore, the unsaturation levels of phospholipids decrease in PD neurons with respect to control neurons, indicating a high level of lipid peroxidation. The analysis of protein secondary structure shows the significantly higher ratio of 𝛽-sheet in PD neurons compared to that of control neurons, suggesting that the abnormal protein structure occurs before their morphological appearances in the striatal neurons. These findings suggest that the biochemical changes in neurons could be involved in the pathogenesis of Parkinson's disease.","PeriodicalId":51163,"journal":{"name":"Spectroscopy-An International Journal","volume":"1 1","pages":"229-238"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Synchrotron FTIR Microspectroscopy Study of the Striatum in 6-Hydroxydopamine Rat Model of Parkinson's Disease\",\"authors\":\"Z. Hongyan, P. Xiao, Wu Ling-yan, Liu Bo, Qi Ze-Ming, Wang Yu-yin\",\"doi\":\"10.1155/2012/176937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, synchrotron-based Fourier transform-infrared (FTIR) microspectroscopy is used to analyze the biochemical composition of the striatal neurons in normal and Parkinson's disease (PD) rat brain tissues. The rat model of Parkinson's disease is established by destroying the nigrostriatal pathway with 6-hydroxydopamine (6-OHDA). The detailed spectral analyses show the significant changes of cellular compositions such as lipids, and proteins in the striatal neurons of 6-OHDA-lesioned PD rats with respect to control neurons. As a result, the intensities of spectral absorption assigned to lipid of the striatal neurons in PD rats are higher than in control animals. Furthermore, the unsaturation levels of phospholipids decrease in PD neurons with respect to control neurons, indicating a high level of lipid peroxidation. The analysis of protein secondary structure shows the significantly higher ratio of 𝛽-sheet in PD neurons compared to that of control neurons, suggesting that the abnormal protein structure occurs before their morphological appearances in the striatal neurons. These findings suggest that the biochemical changes in neurons could be involved in the pathogenesis of Parkinson's disease.\",\"PeriodicalId\":51163,\"journal\":{\"name\":\"Spectroscopy-An International Journal\",\"volume\":\"1 1\",\"pages\":\"229-238\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectroscopy-An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/176937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectroscopy-An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/176937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本研究采用同步加速器傅立叶变换-红外(FTIR)显微光谱技术分析了正常和帕金森病大鼠脑组织纹状体神经元的生化组成。用6-羟多巴胺(6-OHDA)破坏黑质纹状体通路,建立帕金森病大鼠模型。详细的光谱分析显示,与对照组相比,6- ohda损伤的PD大鼠纹状体神经元中脂质和蛋白质等细胞成分发生了显著变化。结果,PD大鼠纹状体神经元脂质光谱吸收强度高于对照动物。此外,PD神经元中磷脂的不饱和水平相对于对照神经元降低,表明脂质过氧化水平较高。蛋白质二级结构分析显示,PD神经元中𝛽-sheet的比值明显高于对照神经元,说明纹状体神经元的蛋白质结构异常发生在其形态出现之前。这些发现提示神经元的生化变化可能参与了帕金森病的发病机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synchrotron FTIR Microspectroscopy Study of the Striatum in 6-Hydroxydopamine Rat Model of Parkinson's Disease
In the present study, synchrotron-based Fourier transform-infrared (FTIR) microspectroscopy is used to analyze the biochemical composition of the striatal neurons in normal and Parkinson's disease (PD) rat brain tissues. The rat model of Parkinson's disease is established by destroying the nigrostriatal pathway with 6-hydroxydopamine (6-OHDA). The detailed spectral analyses show the significant changes of cellular compositions such as lipids, and proteins in the striatal neurons of 6-OHDA-lesioned PD rats with respect to control neurons. As a result, the intensities of spectral absorption assigned to lipid of the striatal neurons in PD rats are higher than in control animals. Furthermore, the unsaturation levels of phospholipids decrease in PD neurons with respect to control neurons, indicating a high level of lipid peroxidation. The analysis of protein secondary structure shows the significantly higher ratio of 𝛽-sheet in PD neurons compared to that of control neurons, suggesting that the abnormal protein structure occurs before their morphological appearances in the striatal neurons. These findings suggest that the biochemical changes in neurons could be involved in the pathogenesis of Parkinson's disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊最新文献
DCDR Spectroscopy as Efficient Tool for Liposome Studies: Aspect of Preparation Procedure Parameters Theoretical and Experimental Studies on Alkali Metal Phenoxyacetates Detection of Fusarium oxysporum Fungal Isolates Using ATR Spectroscopy Can Biofluids Metabolic Profiling Help to Improve Healthcare during Pregnancy Study of Cellular Uptake of Modified Oligonucleotides by Using Time-Resolved Microspectrofluorimetry and Florescence Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1