{"title":"手臂振动控制用防振手套的建模与优化研究","authors":"S. K. Gupta, Oreoluwa Alabi, Paul Kakou, O. Barry","doi":"10.1115/dscc2019-9094","DOIUrl":null,"url":null,"abstract":"\n Various studies in hand-arm vibrations have shown that isolators in the form of anti-vibration (AV) gloves are effective to reduce unwanted vibrations, transmitted to the human hand, from machines and hand tools. However, most of these studies are based on experimental or numerical analysis and hence, the level of effectiveness and optimum values of the glove’s properties remain unclear. In this work, we analytically study the dynamics of hand-arm vibrations with and without a glove using the harmonic balance method. The considered analytical models for the hand-arm vibration comprise of lumped multi-degree of freedom system. The hand-tool interactions are modeled as linear spring and damper system for simplicity and accordingly, we obtain the equations governing the dynamics of the human-hand system. We perform parametric analysis using this bio-mechanical model of the hand-arm vibrations with and without a glove. The parametric analysis on the relative transmissibility (i.e., the ratio of transmissibilities with glove to without glove) shows the dependence of the transmissibility on the glove parameters. We observe that the effect of glove parameters on the relative transmissibility is not monotonous for the studied frequency range. This observation further motivates us to perform optimization of the glove parameters to minimize the overall transmissibility.","PeriodicalId":41412,"journal":{"name":"Mechatronic Systems and Control","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2019-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Modeling and Optimization of Anti-Vibration Gloves for Hand-Arm Vibration Control\",\"authors\":\"S. K. Gupta, Oreoluwa Alabi, Paul Kakou, O. Barry\",\"doi\":\"10.1115/dscc2019-9094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Various studies in hand-arm vibrations have shown that isolators in the form of anti-vibration (AV) gloves are effective to reduce unwanted vibrations, transmitted to the human hand, from machines and hand tools. However, most of these studies are based on experimental or numerical analysis and hence, the level of effectiveness and optimum values of the glove’s properties remain unclear. In this work, we analytically study the dynamics of hand-arm vibrations with and without a glove using the harmonic balance method. The considered analytical models for the hand-arm vibration comprise of lumped multi-degree of freedom system. The hand-tool interactions are modeled as linear spring and damper system for simplicity and accordingly, we obtain the equations governing the dynamics of the human-hand system. We perform parametric analysis using this bio-mechanical model of the hand-arm vibrations with and without a glove. The parametric analysis on the relative transmissibility (i.e., the ratio of transmissibilities with glove to without glove) shows the dependence of the transmissibility on the glove parameters. We observe that the effect of glove parameters on the relative transmissibility is not monotonous for the studied frequency range. This observation further motivates us to perform optimization of the glove parameters to minimize the overall transmissibility.\",\"PeriodicalId\":41412,\"journal\":{\"name\":\"Mechatronic Systems and Control\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/dscc2019-9094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/dscc2019-9094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
On the Modeling and Optimization of Anti-Vibration Gloves for Hand-Arm Vibration Control
Various studies in hand-arm vibrations have shown that isolators in the form of anti-vibration (AV) gloves are effective to reduce unwanted vibrations, transmitted to the human hand, from machines and hand tools. However, most of these studies are based on experimental or numerical analysis and hence, the level of effectiveness and optimum values of the glove’s properties remain unclear. In this work, we analytically study the dynamics of hand-arm vibrations with and without a glove using the harmonic balance method. The considered analytical models for the hand-arm vibration comprise of lumped multi-degree of freedom system. The hand-tool interactions are modeled as linear spring and damper system for simplicity and accordingly, we obtain the equations governing the dynamics of the human-hand system. We perform parametric analysis using this bio-mechanical model of the hand-arm vibrations with and without a glove. The parametric analysis on the relative transmissibility (i.e., the ratio of transmissibilities with glove to without glove) shows the dependence of the transmissibility on the glove parameters. We observe that the effect of glove parameters on the relative transmissibility is not monotonous for the studied frequency range. This observation further motivates us to perform optimization of the glove parameters to minimize the overall transmissibility.
期刊介绍:
This international journal publishes both theoretical and application-oriented papers on various aspects of mechatronic systems, modelling, design, conventional and intelligent control, and intelligent systems. Application areas of mechatronics may include robotics, transportation, energy systems, manufacturing, sensors, actuators, and automation. Techniques of artificial intelligence may include soft computing (fuzzy logic, neural networks, genetic algorithms/evolutionary computing, probabilistic methods, etc.). Techniques may cover frequency and time domains, linear and nonlinear systems, and deterministic and stochastic processes. Hybrid techniques of mechatronics that combine conventional and intelligent methods are also included. First published in 1972, this journal originated with an emphasis on conventional control systems and computer-based applications. Subsequently, with rapid advances in the field and in view of the widespread interest and application of soft computing in control systems, this latter aspect was integrated into the journal. Now the area of mechatronics is included as the main focus. A unique feature of the journal is its pioneering role in bridging the gap between conventional systems and intelligent systems, with an equal emphasis on theory and practical applications, including system modelling, design and instrumentation. It appears four times per year.