联合源信道随时编码

Lijun Deng, Yixin Wang, Xiaoxi Yu, Md. Noor-A.-Rahim, Y. Guan, Zhiping Shi
{"title":"联合源信道随时编码","authors":"Lijun Deng, Yixin Wang, Xiaoxi Yu, Md. Noor-A.-Rahim, Y. Guan, Zhiping Shi","doi":"10.1109/GLOBECOM42002.2020.9322416","DOIUrl":null,"url":null,"abstract":"Joint source channel coding (JSCC) is an effective technique in the non-asymptotic and low latency regime, while suffers from high error floor for sequences with high source probabilities and short block-lengths (HSP-SB). Aiming to address this issue, a joint source channel anytime coding (JSCAC) based on the anytime spatially coupled repeat-accumulate (ASC-RA) codes is presented. In the proposed JSCAC scheme, the adopted exponential distributed coupling (EDC) and partial joint expanding window decoding (PJEWD) can efficiently recover the early transmitted HSP-SB messages that are not fully corrected. Meanwhile, the updating mechanisms in the proposed PJEWD mitigate the complexity of expanding window decoding and the error propagation between the source and channel decoders, attributing to a better error performance. The proposed JSCAC is suitable for HSP-SB source transmission, which is a competitive candidate for communications with high reliability and low delay demands, such as streaming source and control applications, etc.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"28 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Joint Source Channel Anytime Coding\",\"authors\":\"Lijun Deng, Yixin Wang, Xiaoxi Yu, Md. Noor-A.-Rahim, Y. Guan, Zhiping Shi\",\"doi\":\"10.1109/GLOBECOM42002.2020.9322416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Joint source channel coding (JSCC) is an effective technique in the non-asymptotic and low latency regime, while suffers from high error floor for sequences with high source probabilities and short block-lengths (HSP-SB). Aiming to address this issue, a joint source channel anytime coding (JSCAC) based on the anytime spatially coupled repeat-accumulate (ASC-RA) codes is presented. In the proposed JSCAC scheme, the adopted exponential distributed coupling (EDC) and partial joint expanding window decoding (PJEWD) can efficiently recover the early transmitted HSP-SB messages that are not fully corrected. Meanwhile, the updating mechanisms in the proposed PJEWD mitigate the complexity of expanding window decoding and the error propagation between the source and channel decoders, attributing to a better error performance. The proposed JSCAC is suitable for HSP-SB source transmission, which is a competitive candidate for communications with high reliability and low delay demands, such as streaming source and control applications, etc.\",\"PeriodicalId\":12759,\"journal\":{\"name\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"volume\":\"28 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GLOBECOM 2020 - 2020 IEEE Global Communications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GLOBECOM42002.2020.9322416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9322416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

联合信源信道编码(JSCC)是一种有效的非渐近低延迟编码技术,但对于高信源概率和短块长度(HSP-SB)的序列,JSCC存在较高的误码率。针对这一问题,提出了一种基于任意时间空间耦合重复累积码(ASC-RA)的联合源信道任意时间编码(JSCAC)。在JSCAC方案中,采用指数分布耦合(EDC)和部分联合扩展窗口解码(PJEWD)可以有效地恢复未完全校正的早期传输的HSP-SB报文。同时,本文提出的PJEWD的更新机制降低了扩展窗口解码的复杂性和源信道解码器之间的错误传播,从而获得了更好的错误性能。本文提出的JSCAC适用于HSP-SB源传输,是流源、控制等高可靠性、低时延通信的理想选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Source Channel Anytime Coding
Joint source channel coding (JSCC) is an effective technique in the non-asymptotic and low latency regime, while suffers from high error floor for sequences with high source probabilities and short block-lengths (HSP-SB). Aiming to address this issue, a joint source channel anytime coding (JSCAC) based on the anytime spatially coupled repeat-accumulate (ASC-RA) codes is presented. In the proposed JSCAC scheme, the adopted exponential distributed coupling (EDC) and partial joint expanding window decoding (PJEWD) can efficiently recover the early transmitted HSP-SB messages that are not fully corrected. Meanwhile, the updating mechanisms in the proposed PJEWD mitigate the complexity of expanding window decoding and the error propagation between the source and channel decoders, attributing to a better error performance. The proposed JSCAC is suitable for HSP-SB source transmission, which is a competitive candidate for communications with high reliability and low delay demands, such as streaming source and control applications, etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AirID: Injecting a Custom RF Fingerprint for Enhanced UAV Identification using Deep Learning Oversampling Algorithm based on Reinforcement Learning in Imbalanced Problems FAST-RAM: A Fast AI-assistant Solution for Task Offloading and Resource Allocation in MEC Achieving Privacy-Preserving Vehicle Selection for Effective Content Dissemination in Smart Cities Age-optimal Transmission Policy for Markov Source with Differential Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1