{"title":"出血/再灌注损伤(H/R)的长期复苏刺激肾脏PGE2释放。","authors":"S. Myers, A. Seelig, R. Turnage","doi":"10.1097/00024382-199506000-00014","DOIUrl":null,"url":null,"abstract":"This study examines the hypothesis that long-term resuscitation with hyperalimentation (TPN) following acute hemorrhage/reperfusion (H/R) injury stimulates renal release of PGE2. Male Sprague-Dawley rats were anesthetized and subjected to sham or hemorrhage to 30 mmHg for 30 min followed by reperfusion. All rats were placed on TPN for 5 days, then underwent laparotomy for in vivo renal artery and aortic blood flow for 60 min. The kidney was perfused in vitro with Krebs-Henseleit buffer at 3 ml/min (pH 7.4, 37 degrees C) and venous effluent was collected for analysis of PGE2, 6-keto-PGF1 alpha and thromboxane B2 by EIA. Hemorrhage/reperfusion followed by TPN for 5 days increased renal PGE2 2-fold and decreased in vivo renal artery blood flow by 50% compared to the sham group. Hemorrhage/reperfusion followed by TPN did not alter release of the other eicosanoids measured. These data suggest that the kidney has a limited capacity to maintain renal blood flow by increasing release of PGE2 when the animal is subjected to long-term resuscitation with TPN following mild hemorrhage/reperfusion injury.","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":"44 1","pages":"335-9"},"PeriodicalIF":2.9000,"publicationDate":"1995-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term resuscitation of hemorrhage/reperfusion injury (H/R) stimulates renal PGE2 release.\",\"authors\":\"S. Myers, A. Seelig, R. Turnage\",\"doi\":\"10.1097/00024382-199506000-00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the hypothesis that long-term resuscitation with hyperalimentation (TPN) following acute hemorrhage/reperfusion (H/R) injury stimulates renal release of PGE2. Male Sprague-Dawley rats were anesthetized and subjected to sham or hemorrhage to 30 mmHg for 30 min followed by reperfusion. All rats were placed on TPN for 5 days, then underwent laparotomy for in vivo renal artery and aortic blood flow for 60 min. The kidney was perfused in vitro with Krebs-Henseleit buffer at 3 ml/min (pH 7.4, 37 degrees C) and venous effluent was collected for analysis of PGE2, 6-keto-PGF1 alpha and thromboxane B2 by EIA. Hemorrhage/reperfusion followed by TPN for 5 days increased renal PGE2 2-fold and decreased in vivo renal artery blood flow by 50% compared to the sham group. Hemorrhage/reperfusion followed by TPN did not alter release of the other eicosanoids measured. These data suggest that the kidney has a limited capacity to maintain renal blood flow by increasing release of PGE2 when the animal is subjected to long-term resuscitation with TPN following mild hemorrhage/reperfusion injury.\",\"PeriodicalId\":20659,\"journal\":{\"name\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"volume\":\"44 1\",\"pages\":\"335-9\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"1995-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostaglandins, leukotrienes, and essential fatty acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/00024382-199506000-00014\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/00024382-199506000-00014","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Long-term resuscitation of hemorrhage/reperfusion injury (H/R) stimulates renal PGE2 release.
This study examines the hypothesis that long-term resuscitation with hyperalimentation (TPN) following acute hemorrhage/reperfusion (H/R) injury stimulates renal release of PGE2. Male Sprague-Dawley rats were anesthetized and subjected to sham or hemorrhage to 30 mmHg for 30 min followed by reperfusion. All rats were placed on TPN for 5 days, then underwent laparotomy for in vivo renal artery and aortic blood flow for 60 min. The kidney was perfused in vitro with Krebs-Henseleit buffer at 3 ml/min (pH 7.4, 37 degrees C) and venous effluent was collected for analysis of PGE2, 6-keto-PGF1 alpha and thromboxane B2 by EIA. Hemorrhage/reperfusion followed by TPN for 5 days increased renal PGE2 2-fold and decreased in vivo renal artery blood flow by 50% compared to the sham group. Hemorrhage/reperfusion followed by TPN did not alter release of the other eicosanoids measured. These data suggest that the kidney has a limited capacity to maintain renal blood flow by increasing release of PGE2 when the animal is subjected to long-term resuscitation with TPN following mild hemorrhage/reperfusion injury.
期刊介绍:
The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.