自磁场对轴向磁化离子通道中激光驱动尾流场电子加速的影响

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, APPLIED Laser and Particle Beams Pub Date : 2020-10-05 DOI:10.1017/s0263034620000324
A. Kargarian, K. Hajisharifi
{"title":"自磁场对轴向磁化离子通道中激光驱动尾流场电子加速的影响","authors":"A. Kargarian, K. Hajisharifi","doi":"10.1017/s0263034620000324","DOIUrl":null,"url":null,"abstract":"In this paper, we have investigated the relativistic electron acceleration by plasma wave in an axially magnetized plasma by considering the self-magnetic field effects. We show that the optimum value of an external axial magnetic field could increase the electron energy gain more than 40% than that obtained in the absence of the magnetic field. Moreover, results demonstrate that the self-magnetic field produced by the electric current of the energetic electrons plays a significant role in the plasma wakefield acceleration of electron. In this regard, it will be shown that taking into account the self-magnetic field can increase the electron energy gain up to 36% for the case with self-magnetic field amplitude Ωs = 0.3 and even up to higher energies for the systems containing stronger self-magnetic field. The effects of plasma wave amplitude and phase, the ion channel field magnitude, and the electron initial kinetic energy on the acceleration of relativistic electron have also been investigated. A scaling law for the optimization of the electron energy is eventually proposed.","PeriodicalId":49925,"journal":{"name":"Laser and Particle Beams","volume":"74 1","pages":"1-7"},"PeriodicalIF":1.1000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-magnetic field effects on laser-driven wakefield electron acceleration in axially magnetized ion channel\",\"authors\":\"A. Kargarian, K. Hajisharifi\",\"doi\":\"10.1017/s0263034620000324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have investigated the relativistic electron acceleration by plasma wave in an axially magnetized plasma by considering the self-magnetic field effects. We show that the optimum value of an external axial magnetic field could increase the electron energy gain more than 40% than that obtained in the absence of the magnetic field. Moreover, results demonstrate that the self-magnetic field produced by the electric current of the energetic electrons plays a significant role in the plasma wakefield acceleration of electron. In this regard, it will be shown that taking into account the self-magnetic field can increase the electron energy gain up to 36% for the case with self-magnetic field amplitude Ωs = 0.3 and even up to higher energies for the systems containing stronger self-magnetic field. The effects of plasma wave amplitude and phase, the ion channel field magnitude, and the electron initial kinetic energy on the acceleration of relativistic electron have also been investigated. A scaling law for the optimization of the electron energy is eventually proposed.\",\"PeriodicalId\":49925,\"journal\":{\"name\":\"Laser and Particle Beams\",\"volume\":\"74 1\",\"pages\":\"1-7\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser and Particle Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s0263034620000324\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser and Particle Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0263034620000324","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

本文在考虑自磁场效应的情况下,研究了轴向磁化等离子体中等离子体波对电子的相对论性加速。我们发现,与没有磁场时相比,最优的外轴向磁场可以使电子能量增益增加40%以上。结果表明,高能电子的电流产生的自磁场在电子的等离子体尾流场加速中起着重要作用。对于自磁场振幅Ωs = 0.3的情况,考虑自磁场可以使电子能量增益提高36%,对于含有更强自磁场的系统,甚至可以提高更高的能量。研究了等离子体波振幅和相位、离子通道场大小和电子初始动能对相对论性电子加速度的影响。最后提出了优化电子能量的标度律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-magnetic field effects on laser-driven wakefield electron acceleration in axially magnetized ion channel
In this paper, we have investigated the relativistic electron acceleration by plasma wave in an axially magnetized plasma by considering the self-magnetic field effects. We show that the optimum value of an external axial magnetic field could increase the electron energy gain more than 40% than that obtained in the absence of the magnetic field. Moreover, results demonstrate that the self-magnetic field produced by the electric current of the energetic electrons plays a significant role in the plasma wakefield acceleration of electron. In this regard, it will be shown that taking into account the self-magnetic field can increase the electron energy gain up to 36% for the case with self-magnetic field amplitude Ωs = 0.3 and even up to higher energies for the systems containing stronger self-magnetic field. The effects of plasma wave amplitude and phase, the ion channel field magnitude, and the electron initial kinetic energy on the acceleration of relativistic electron have also been investigated. A scaling law for the optimization of the electron energy is eventually proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Laser and Particle Beams
Laser and Particle Beams PHYSICS, APPLIED-
CiteScore
1.90
自引率
11.10%
发文量
25
审稿时长
1 months
期刊介绍: Laser and Particle Beams is an international journal which deals with basic physics issues of intense laser and particle beams, and the interaction of these beams with matter. Research on pulse power technology associated with beam generation is also of strong interest. Subjects covered include the physics of high energy densities; non-LTE phenomena; hot dense matter and related atomic, plasma and hydrodynamic physics and astrophysics; intense sources of coherent radiation; high current particle accelerators; beam-wave interaction; and pulsed power technology.
期刊最新文献
Numerical analysis of X-ray multilayer Fresnel zone plates with high aspect ratios Hot electron emission characteristics from thin metal foil targets irradiated by terawatt laser Flux and estimated spectra from a low-intensity laser-driven X-ray source Numerical Study of Carbon Nanofoam Targets for Laser-Driven Inertial Fusion Experiments Helium as a Surrogate for Deuterium in LPI Studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1