{"title":"基于潮流的建筑物对地下铁路地面振动响应研究","authors":"T. Edirisinghe, J. Talbot","doi":"10.1109/MERCon52712.2021.9525727","DOIUrl":null,"url":null,"abstract":"Ground-borne vibration in buildings is a growing problem in crowded cities due to the pressure to build ever closer to underground railway tunnels. Despite advances in numerical models for the prediction of ground-borne vibration, it is yet unclear how effective deep piled foundations are at mitigating the vibration transmitted into a building compared to shallow foundations, such as footings. The power-flow insertion gain is used as a measure of the building's overall vibration performance when piles, rather than footings, are included in the foundation. The tunnel-foundation system is based on the pipe-in-pipe model of a longitudinally invariant tunnel coupled to a boundary-element model of the foundation using an iterative wave-scattering approach. The initial theoretical study presented in this paper shows that piles generally attenuate the vibration levels in a benchmark building compared to footings. It is also shown how a simplified model for a tall building, based on a series of individual dashpots, can account for the modification of the foundation vibration field when the building is constructed.","PeriodicalId":6855,"journal":{"name":"2021 Moratuwa Engineering Research Conference (MERCon)","volume":"95 1","pages":"136-141"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Power-Flow Based Investigation into the Response of Buildings to Ground-Borne Vibration from Underground Railways\",\"authors\":\"T. Edirisinghe, J. Talbot\",\"doi\":\"10.1109/MERCon52712.2021.9525727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ground-borne vibration in buildings is a growing problem in crowded cities due to the pressure to build ever closer to underground railway tunnels. Despite advances in numerical models for the prediction of ground-borne vibration, it is yet unclear how effective deep piled foundations are at mitigating the vibration transmitted into a building compared to shallow foundations, such as footings. The power-flow insertion gain is used as a measure of the building's overall vibration performance when piles, rather than footings, are included in the foundation. The tunnel-foundation system is based on the pipe-in-pipe model of a longitudinally invariant tunnel coupled to a boundary-element model of the foundation using an iterative wave-scattering approach. The initial theoretical study presented in this paper shows that piles generally attenuate the vibration levels in a benchmark building compared to footings. It is also shown how a simplified model for a tall building, based on a series of individual dashpots, can account for the modification of the foundation vibration field when the building is constructed.\",\"PeriodicalId\":6855,\"journal\":{\"name\":\"2021 Moratuwa Engineering Research Conference (MERCon)\",\"volume\":\"95 1\",\"pages\":\"136-141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Moratuwa Engineering Research Conference (MERCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MERCon52712.2021.9525727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCon52712.2021.9525727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Power-Flow Based Investigation into the Response of Buildings to Ground-Borne Vibration from Underground Railways
Ground-borne vibration in buildings is a growing problem in crowded cities due to the pressure to build ever closer to underground railway tunnels. Despite advances in numerical models for the prediction of ground-borne vibration, it is yet unclear how effective deep piled foundations are at mitigating the vibration transmitted into a building compared to shallow foundations, such as footings. The power-flow insertion gain is used as a measure of the building's overall vibration performance when piles, rather than footings, are included in the foundation. The tunnel-foundation system is based on the pipe-in-pipe model of a longitudinally invariant tunnel coupled to a boundary-element model of the foundation using an iterative wave-scattering approach. The initial theoretical study presented in this paper shows that piles generally attenuate the vibration levels in a benchmark building compared to footings. It is also shown how a simplified model for a tall building, based on a series of individual dashpots, can account for the modification of the foundation vibration field when the building is constructed.