射频磁控溅射氧化亚铜(Cu2O)薄膜的结构行为

A. Khilkhal, A. A. Khadayeir
{"title":"射频磁控溅射氧化亚铜(Cu2O)薄膜的结构行为","authors":"A. Khilkhal, A. A. Khadayeir","doi":"10.29350/qjps.2020.25.2.1082","DOIUrl":null,"url":null,"abstract":"In this paper a Cu2O thin films, were deposited using RF sputtering technique. Sputtering process can be defined as ejection atoms of material surface due to positive ions bombardment of (mostly) inert gas, sometimes called cathode sputtering. Then the thin films were characterized by XRD. The results obtained showed that, the thin films had a polycrystalline structure with cubic lattice unit cell. strongest peak was seen at 61.3967 degree, and FWHM was at 0.215 degree, while lattice constant was 4.26 Aº. The average grain size was 44.87 nm. While AFM analysis showed that the increasing of four samples temperature (523, 573, 623 and 673) Kelvin, led to increase of roughness average from (3.39 to 9.2) nm, and ten points height from (13.7 to 36.3). On the other hand granularity cumulation distribution charts showed that the average diameter was varied from (43.31 to 51.28) nm with grain numbers ( 739, to 414) respectively","PeriodicalId":16215,"journal":{"name":"Journal of Kufa - Physics","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Structural behavior of RF magnetron sputtered cuprous oxide (Cu2O) films\",\"authors\":\"A. Khilkhal, A. A. Khadayeir\",\"doi\":\"10.29350/qjps.2020.25.2.1082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a Cu2O thin films, were deposited using RF sputtering technique. Sputtering process can be defined as ejection atoms of material surface due to positive ions bombardment of (mostly) inert gas, sometimes called cathode sputtering. Then the thin films were characterized by XRD. The results obtained showed that, the thin films had a polycrystalline structure with cubic lattice unit cell. strongest peak was seen at 61.3967 degree, and FWHM was at 0.215 degree, while lattice constant was 4.26 Aº. The average grain size was 44.87 nm. While AFM analysis showed that the increasing of four samples temperature (523, 573, 623 and 673) Kelvin, led to increase of roughness average from (3.39 to 9.2) nm, and ten points height from (13.7 to 36.3). On the other hand granularity cumulation distribution charts showed that the average diameter was varied from (43.31 to 51.28) nm with grain numbers ( 739, to 414) respectively\",\"PeriodicalId\":16215,\"journal\":{\"name\":\"Journal of Kufa - Physics\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Kufa - Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29350/qjps.2020.25.2.1082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Kufa - Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29350/qjps.2020.25.2.1082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文采用射频溅射技术制备了Cu2O薄膜。溅射过程可以定义为正离子轰击(主要是)惰性气体导致材料表面原子喷射的过程,有时也称为阴极溅射。然后用XRD对薄膜进行表征。结果表明,薄膜具有立方晶格的多晶结构。最强峰在61.3967°,FWHM在0.215°,晶格常数为4.26 Aº。平均晶粒尺寸为44.87 nm。AFM分析表明,温度(523、573、623和673)Kelvin升高,导致粗糙度平均值从(3.39)nm增加到9.2)nm,高度从(13.7)增加到36.3。粒度累积分布图显示,平均粒径为(43.31 ~ 51.28)nm,粒数为(739 ~ 414)nm
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural behavior of RF magnetron sputtered cuprous oxide (Cu2O) films
In this paper a Cu2O thin films, were deposited using RF sputtering technique. Sputtering process can be defined as ejection atoms of material surface due to positive ions bombardment of (mostly) inert gas, sometimes called cathode sputtering. Then the thin films were characterized by XRD. The results obtained showed that, the thin films had a polycrystalline structure with cubic lattice unit cell. strongest peak was seen at 61.3967 degree, and FWHM was at 0.215 degree, while lattice constant was 4.26 Aº. The average grain size was 44.87 nm. While AFM analysis showed that the increasing of four samples temperature (523, 573, 623 and 673) Kelvin, led to increase of roughness average from (3.39 to 9.2) nm, and ten points height from (13.7 to 36.3). On the other hand granularity cumulation distribution charts showed that the average diameter was varied from (43.31 to 51.28) nm with grain numbers ( 739, to 414) respectively
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Endovenous Laser Ablation of Venous Ulcers of the Lower Limbs: A Study of the Relationship between Applied Laser Power and Age/Gender Simple Scenario of Photons Emission from Anti Charm–Gluon Interaction using QCD Theory Study of geometrical properties of 96Mo, 98Ru and 100Pd isotones within interacting boson model Tunneling magnetoresistance calculation for double quantum dot connected in parallel shape to ferromagnetic Leads Enhanced the Physical Properties of Thin Films by Doping Zinc Oxide with Tin Prepared by the Pyrolysis Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1