{"title":"使用Hyflex控制记忆体和ProTaper next文件系统进行锥束计算机层析分析,评估和比较预备牙的根厚、定心能力、根管运输和乳牙的器械时间-一项体外研究","authors":"A. Prabhakar, Bibi Sunti, Basappa Nadig, U. Salma","doi":"10.4103/inpc.inpc_10_20","DOIUrl":null,"url":null,"abstract":"Objectives: The aim of this study was to evaluate and compare remaining root thickness, centering ability, canal transportation, and instrumentation time of Hyflex controlled memory (CM) and ProTaper (PTN) files in the primary root canals using a cone-beam computed tomographic (CBCT) analysis. Materials and Methods: Fifty freshly extracted human primary teeth with minimum of 7 mm root length were randomly divided into two groups (Group 1 – Hyflex CM files, Group 2 – PTN files) were included in the study. Teeth were scanned using CBCT before and after the instrumentation for both the groups. Remaining dentin thickness, centering ability, canal transportation, and instrumentation time were evaluated for each group. Results: A significant difference was found in remaining root thickness and instrumentation time between Hyflex CM and PTN file system. PTN files showed better remaining root thickness as compared to Hyflex CM files, and the mean instrumentation time of “PTN” was significantly less than “Hyflex CM files.” Conclusions: PTN file system was found to be faster with more remaining root thickness of the primary teeth and hence can be recommended for shaping the root canals of the primary teeth.","PeriodicalId":14257,"journal":{"name":"International Journal of Preventive and Clinical Dental Research","volume":"8 1","pages":"22 - 25"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cone-beam computed tomographic analysis to evaluate and compare the root thickness of prepared teeth, centering ability, canal transportation, and instrumentation time in the deciduous teeth using Hyflex controlled memory and ProTaper next file systems – An in vitro study\",\"authors\":\"A. Prabhakar, Bibi Sunti, Basappa Nadig, U. Salma\",\"doi\":\"10.4103/inpc.inpc_10_20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: The aim of this study was to evaluate and compare remaining root thickness, centering ability, canal transportation, and instrumentation time of Hyflex controlled memory (CM) and ProTaper (PTN) files in the primary root canals using a cone-beam computed tomographic (CBCT) analysis. Materials and Methods: Fifty freshly extracted human primary teeth with minimum of 7 mm root length were randomly divided into two groups (Group 1 – Hyflex CM files, Group 2 – PTN files) were included in the study. Teeth were scanned using CBCT before and after the instrumentation for both the groups. Remaining dentin thickness, centering ability, canal transportation, and instrumentation time were evaluated for each group. Results: A significant difference was found in remaining root thickness and instrumentation time between Hyflex CM and PTN file system. PTN files showed better remaining root thickness as compared to Hyflex CM files, and the mean instrumentation time of “PTN” was significantly less than “Hyflex CM files.” Conclusions: PTN file system was found to be faster with more remaining root thickness of the primary teeth and hence can be recommended for shaping the root canals of the primary teeth.\",\"PeriodicalId\":14257,\"journal\":{\"name\":\"International Journal of Preventive and Clinical Dental Research\",\"volume\":\"8 1\",\"pages\":\"22 - 25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Preventive and Clinical Dental Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/inpc.inpc_10_20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Preventive and Clinical Dental Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/inpc.inpc_10_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A cone-beam computed tomographic analysis to evaluate and compare the root thickness of prepared teeth, centering ability, canal transportation, and instrumentation time in the deciduous teeth using Hyflex controlled memory and ProTaper next file systems – An in vitro study
Objectives: The aim of this study was to evaluate and compare remaining root thickness, centering ability, canal transportation, and instrumentation time of Hyflex controlled memory (CM) and ProTaper (PTN) files in the primary root canals using a cone-beam computed tomographic (CBCT) analysis. Materials and Methods: Fifty freshly extracted human primary teeth with minimum of 7 mm root length were randomly divided into two groups (Group 1 – Hyflex CM files, Group 2 – PTN files) were included in the study. Teeth were scanned using CBCT before and after the instrumentation for both the groups. Remaining dentin thickness, centering ability, canal transportation, and instrumentation time were evaluated for each group. Results: A significant difference was found in remaining root thickness and instrumentation time between Hyflex CM and PTN file system. PTN files showed better remaining root thickness as compared to Hyflex CM files, and the mean instrumentation time of “PTN” was significantly less than “Hyflex CM files.” Conclusions: PTN file system was found to be faster with more remaining root thickness of the primary teeth and hence can be recommended for shaping the root canals of the primary teeth.