{"title":"利用果糖-天冬酰胺必需的沙门氏菌糖激酶的鉴定。","authors":"P. Biswas, E. Behrman, V. Gopalan","doi":"10.1139/bcb-2016-0138","DOIUrl":null,"url":null,"abstract":"Salmonella can utilize fructose-asparagine (F-Asn), a naturally occurring Amadori product, as its sole carbon and nitrogen source. Conversion of F-Asn to the common intermediates glucose-6-phosphate, aspartate, and ammonia was predicted to involve the sequential action of an asparaginase, a kinase, and a deglycase. Mutants lacking the deglycase are highly attenuated in mouse models of intestinal inflammation owing to the toxic build-up of the deglycase substrate. The limited distribution of this metabolic pathway in the animal gut microbiome raises the prospects for antibacterial discovery. We report the biochemical characterization of the kinase that was expected to transform fructose-aspartate to 6-phosphofructose-aspartate during F-Asn utilization. In addition to confirming its anticipated function, we determined through studies of fructose-aspartate analogues that this kinase exhibits a substrate-specificity with greater tolerance to changes to the amino acid (including the d-isomer of aspartate) than to the sugar.","PeriodicalId":9524,"journal":{"name":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","volume":"44 1","pages":"304-309"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Characterization of a Salmonella sugar kinase essential for the utilization of fructose-asparagine.\",\"authors\":\"P. Biswas, E. Behrman, V. Gopalan\",\"doi\":\"10.1139/bcb-2016-0138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salmonella can utilize fructose-asparagine (F-Asn), a naturally occurring Amadori product, as its sole carbon and nitrogen source. Conversion of F-Asn to the common intermediates glucose-6-phosphate, aspartate, and ammonia was predicted to involve the sequential action of an asparaginase, a kinase, and a deglycase. Mutants lacking the deglycase are highly attenuated in mouse models of intestinal inflammation owing to the toxic build-up of the deglycase substrate. The limited distribution of this metabolic pathway in the animal gut microbiome raises the prospects for antibacterial discovery. We report the biochemical characterization of the kinase that was expected to transform fructose-aspartate to 6-phosphofructose-aspartate during F-Asn utilization. In addition to confirming its anticipated function, we determined through studies of fructose-aspartate analogues that this kinase exhibits a substrate-specificity with greater tolerance to changes to the amino acid (including the d-isomer of aspartate) than to the sugar.\",\"PeriodicalId\":9524,\"journal\":{\"name\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"volume\":\"44 1\",\"pages\":\"304-309\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1139/bcb-2016-0138\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of biochemistry and cell biology = Revue canadienne de biochimie et biologie cellulaire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/bcb-2016-0138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of a Salmonella sugar kinase essential for the utilization of fructose-asparagine.
Salmonella can utilize fructose-asparagine (F-Asn), a naturally occurring Amadori product, as its sole carbon and nitrogen source. Conversion of F-Asn to the common intermediates glucose-6-phosphate, aspartate, and ammonia was predicted to involve the sequential action of an asparaginase, a kinase, and a deglycase. Mutants lacking the deglycase are highly attenuated in mouse models of intestinal inflammation owing to the toxic build-up of the deglycase substrate. The limited distribution of this metabolic pathway in the animal gut microbiome raises the prospects for antibacterial discovery. We report the biochemical characterization of the kinase that was expected to transform fructose-aspartate to 6-phosphofructose-aspartate during F-Asn utilization. In addition to confirming its anticipated function, we determined through studies of fructose-aspartate analogues that this kinase exhibits a substrate-specificity with greater tolerance to changes to the amino acid (including the d-isomer of aspartate) than to the sugar.