09Mn2Si钢棒材螺旋轧制组织变化规律及其对冲击韧性的影响

I. Vlasov, N. Surikova, I. Mishin, S. Panin, A. Smirnova, A. Yakovlev
{"title":"09Mn2Si钢棒材螺旋轧制组织变化规律及其对冲击韧性的影响","authors":"I. Vlasov, N. Surikova, I. Mishin, S. Panin, A. Smirnova, A. Yakovlev","doi":"10.1063/1.5132250","DOIUrl":null,"url":null,"abstract":"Effect of structure modification induced by the helical rolling on the impact toughness of 09Mn2Si steel was studied. A metallographic structural analysis of the steel in the as-received state as well as after the helical rolling (HR) was carried out. It was revealed that the five-stage combined thermal-mechanical treatment results in ferrite grains refinement, formation of rolling texture at the depth of up to 1 mm, while ultrafine grained structure is formed in the surface layer. This is accompanied by a gradient hardening pattern over the rod’s cross-section as evidenced from microhardness measurements. Mechanical properties were assessed through impact bending tests. It is shown that helical rolling gives rise to increasing fracture toughness of the rolled specimens in the entire testing temperature range (-70 ÷ +20 °C). The maximum two-fold increase of impact toughness is registered at the testing temperature of -70 °C. Authors suggest that the main reason for this increase is formation of a gradient...","PeriodicalId":20637,"journal":{"name":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularities of structure modification of 09Mn2Si steel rod at helical rolling and its influence on impact toughness\",\"authors\":\"I. Vlasov, N. Surikova, I. Mishin, S. Panin, A. Smirnova, A. Yakovlev\",\"doi\":\"10.1063/1.5132250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effect of structure modification induced by the helical rolling on the impact toughness of 09Mn2Si steel was studied. A metallographic structural analysis of the steel in the as-received state as well as after the helical rolling (HR) was carried out. It was revealed that the five-stage combined thermal-mechanical treatment results in ferrite grains refinement, formation of rolling texture at the depth of up to 1 mm, while ultrafine grained structure is formed in the surface layer. This is accompanied by a gradient hardening pattern over the rod’s cross-section as evidenced from microhardness measurements. Mechanical properties were assessed through impact bending tests. It is shown that helical rolling gives rise to increasing fracture toughness of the rolled specimens in the entire testing temperature range (-70 ÷ +20 °C). The maximum two-fold increase of impact toughness is registered at the testing temperature of -70 °C. Authors suggest that the main reason for this increase is formation of a gradient...\",\"PeriodicalId\":20637,\"journal\":{\"name\":\"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/1.5132250\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/1.5132250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了螺旋轧制诱导的组织改性对09Mn2Si钢冲击韧性的影响。对钢在接收状态和螺旋轧制后的金相组织进行了分析。结果表明:五段复合热处理使铁素体晶粒细化,在深度达1 mm处形成轧制织构,表层形成超细晶组织;这是伴随着一个梯度硬化模式在棒的横截面,证明了从显微硬度测量。通过冲击弯曲试验评估了机械性能。结果表明,在整个试验温度范围内(-70℃~ +20℃),螺旋轧制试样的断裂韧性均有提高。在-70°C的测试温度下,冲击韧性最大增加了两倍。作者认为,这种增加的主要原因是形成了一个梯度……
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regularities of structure modification of 09Mn2Si steel rod at helical rolling and its influence on impact toughness
Effect of structure modification induced by the helical rolling on the impact toughness of 09Mn2Si steel was studied. A metallographic structural analysis of the steel in the as-received state as well as after the helical rolling (HR) was carried out. It was revealed that the five-stage combined thermal-mechanical treatment results in ferrite grains refinement, formation of rolling texture at the depth of up to 1 mm, while ultrafine grained structure is formed in the surface layer. This is accompanied by a gradient hardening pattern over the rod’s cross-section as evidenced from microhardness measurements. Mechanical properties were assessed through impact bending tests. It is shown that helical rolling gives rise to increasing fracture toughness of the rolled specimens in the entire testing temperature range (-70 ÷ +20 °C). The maximum two-fold increase of impact toughness is registered at the testing temperature of -70 °C. Authors suggest that the main reason for this increase is formation of a gradient...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensile behavior of friction stir welded Al-Mg-Si alloy Structural transformations in air heated Al-Cr powder compacts Effect of feed speed on the quality of titanium-aluminum bimetal produced by friction stir welding Electron-beam additive manufacturing of product from Al-Mg alloy: Macrostructure and x-ray analysis The calculation of the temperature dependent diffusion coefficient: The first principles approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1