Samuel A Mahanes, Matthew E S Bracken, Cascade J B Sorte
{"title":"海洋生产者改善气候变化:优势预测影响吗?","authors":"Samuel A Mahanes, Matthew E S Bracken, Cascade J B Sorte","doi":"10.1086/721229","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractClimate change threatens biodiversity worldwide, and assessing how those changes will impact communities will be critical for conservation. Dominant primary producers can alter local-scale environmental conditions, reducing temperature <i>via</i> shading and mitigating ocean acidification <i>via</i> photosynthesis, which could buffer communities from the impacts of climate change. We conducted two experiments on the coast of southeastern Alaska to assess the effects of a common seaweed species, <i>Neorhodomela oregona</i>, on temperature and pH in field tide pools and tide pool mesocosms. We found that <i>N. oregona</i> was numerically dominant in this system, covering >60% of habitable space in the pools and accounting for >40% of live cover. However, while <i>N. oregona</i> had a density-dependent effect on pH in isolated mesocosms, we did not find a consistent effect of <i>N. oregona</i> on either pH or water temperature in tide pools in the field. These results suggest that the amelioration of climate change impacts in immersed marine ecosystems by primary producers is not universal and likely depends on species' functional attributes, including photosynthetic rate and physical structure, in addition to abundance or dominance.</p>","PeriodicalId":55376,"journal":{"name":"Biological Bulletin","volume":"243 3","pages":"299-314"},"PeriodicalIF":2.1000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Climate Change Amelioration by Marine Producers: Does Dominance Predict Impact?\",\"authors\":\"Samuel A Mahanes, Matthew E S Bracken, Cascade J B Sorte\",\"doi\":\"10.1086/721229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractClimate change threatens biodiversity worldwide, and assessing how those changes will impact communities will be critical for conservation. Dominant primary producers can alter local-scale environmental conditions, reducing temperature <i>via</i> shading and mitigating ocean acidification <i>via</i> photosynthesis, which could buffer communities from the impacts of climate change. We conducted two experiments on the coast of southeastern Alaska to assess the effects of a common seaweed species, <i>Neorhodomela oregona</i>, on temperature and pH in field tide pools and tide pool mesocosms. We found that <i>N. oregona</i> was numerically dominant in this system, covering >60% of habitable space in the pools and accounting for >40% of live cover. However, while <i>N. oregona</i> had a density-dependent effect on pH in isolated mesocosms, we did not find a consistent effect of <i>N. oregona</i> on either pH or water temperature in tide pools in the field. These results suggest that the amelioration of climate change impacts in immersed marine ecosystems by primary producers is not universal and likely depends on species' functional attributes, including photosynthetic rate and physical structure, in addition to abundance or dominance.</p>\",\"PeriodicalId\":55376,\"journal\":{\"name\":\"Biological Bulletin\",\"volume\":\"243 3\",\"pages\":\"299-314\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Bulletin\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1086/721229\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Bulletin","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/721229","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Climate Change Amelioration by Marine Producers: Does Dominance Predict Impact?
AbstractClimate change threatens biodiversity worldwide, and assessing how those changes will impact communities will be critical for conservation. Dominant primary producers can alter local-scale environmental conditions, reducing temperature via shading and mitigating ocean acidification via photosynthesis, which could buffer communities from the impacts of climate change. We conducted two experiments on the coast of southeastern Alaska to assess the effects of a common seaweed species, Neorhodomela oregona, on temperature and pH in field tide pools and tide pool mesocosms. We found that N. oregona was numerically dominant in this system, covering >60% of habitable space in the pools and accounting for >40% of live cover. However, while N. oregona had a density-dependent effect on pH in isolated mesocosms, we did not find a consistent effect of N. oregona on either pH or water temperature in tide pools in the field. These results suggest that the amelioration of climate change impacts in immersed marine ecosystems by primary producers is not universal and likely depends on species' functional attributes, including photosynthetic rate and physical structure, in addition to abundance or dominance.
期刊介绍:
The Biological Bulletin disseminates novel scientific results in broadly related fields of biology in keeping with more than 100 years of a tradition of excellence. The Bulletin publishes outstanding original research with an overarching goal of explaining how organisms develop, function, and evolve in their natural environments. To that end, the journal publishes papers in the fields of Neurobiology and Behavior, Physiology and Biomechanics, Ecology and Evolution, Development and Reproduction, Cell Biology, Symbiosis and Systematics. The Bulletin emphasizes basic research on marine model systems but includes articles of an interdisciplinary nature when appropriate.