基于离散模糊PI控制和粒子群优化的控制器系统设计方法

J. Cheon, Jinwook Kim, Hongju Kim, Soonman Kwon, Youngkiu Choi
{"title":"基于离散模糊PI控制和粒子群优化的控制器系统设计方法","authors":"J. Cheon, Jinwook Kim, Hongju Kim, Soonman Kwon, Youngkiu Choi","doi":"10.1109/COASE.2018.8560373","DOIUrl":null,"url":null,"abstract":"This paper presents a systematic design method of a controller using the discrete fuzzy PI control and the particle swarm optimization (PSO). Unlike a conventional PI controller, the discrete fuzzy PI controller has variable gains according to its input variables. Generally, it is complicated to tune the parameters of a fuzzy controller because there are too many parameters which are strongly coupled. In the discrete-time domain, the discrete fuzzy PI controller is a superset of the conventional PI controller. And the initial parameters of the fuzzy PI controller are selected by using the inclusion relationship. And, for the sake of simplicity, only four rules are used to construct a nonlinear fuzzy control surface. The tuning parameters of the discrete fuzzy PI controller are optimized by using the PSO. To verify the effectiveness of the controller designed by using the discrete fuzzy PI control and the PSO, we applied it to a wind turbine pitch controller. As a result, the proposed controller has variable gains, unlike the PI controller, and make the pitch controller operate in boarder operating regions.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"136 1","pages":"1581-1586"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systematic Design Method of Controller using Discrete Fuzzy PI Control and Particle Swarm Optimization\",\"authors\":\"J. Cheon, Jinwook Kim, Hongju Kim, Soonman Kwon, Youngkiu Choi\",\"doi\":\"10.1109/COASE.2018.8560373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a systematic design method of a controller using the discrete fuzzy PI control and the particle swarm optimization (PSO). Unlike a conventional PI controller, the discrete fuzzy PI controller has variable gains according to its input variables. Generally, it is complicated to tune the parameters of a fuzzy controller because there are too many parameters which are strongly coupled. In the discrete-time domain, the discrete fuzzy PI controller is a superset of the conventional PI controller. And the initial parameters of the fuzzy PI controller are selected by using the inclusion relationship. And, for the sake of simplicity, only four rules are used to construct a nonlinear fuzzy control surface. The tuning parameters of the discrete fuzzy PI controller are optimized by using the PSO. To verify the effectiveness of the controller designed by using the discrete fuzzy PI control and the PSO, we applied it to a wind turbine pitch controller. As a result, the proposed controller has variable gains, unlike the PI controller, and make the pitch controller operate in boarder operating regions.\",\"PeriodicalId\":6518,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"136 1\",\"pages\":\"1581-1586\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2018.8560373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于离散模糊PI控制和粒子群优化的控制器系统设计方法。与传统的PI控制器不同,离散模糊PI控制器根据其输入变量具有可变增益。由于模糊控制器中存在大量强耦合参数,因此模糊控制器的参数整定比较复杂。在离散时域,离散模糊PI控制器是传统PI控制器的超集。利用包含关系选择模糊PI控制器的初始参数。并且,为简单起见,仅使用4条规则来构造非线性模糊控制面。利用粒子群算法对离散模糊PI控制器的整定参数进行了优化。为了验证采用离散模糊PI控制和粒子群算法设计的控制器的有效性,我们将其应用于风力发电机桨距控制器。因此,与PI控制器不同,所提出的控制器具有可变增益,并使螺距控制器在边界操作区域中工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Systematic Design Method of Controller using Discrete Fuzzy PI Control and Particle Swarm Optimization
This paper presents a systematic design method of a controller using the discrete fuzzy PI control and the particle swarm optimization (PSO). Unlike a conventional PI controller, the discrete fuzzy PI controller has variable gains according to its input variables. Generally, it is complicated to tune the parameters of a fuzzy controller because there are too many parameters which are strongly coupled. In the discrete-time domain, the discrete fuzzy PI controller is a superset of the conventional PI controller. And the initial parameters of the fuzzy PI controller are selected by using the inclusion relationship. And, for the sake of simplicity, only four rules are used to construct a nonlinear fuzzy control surface. The tuning parameters of the discrete fuzzy PI controller are optimized by using the PSO. To verify the effectiveness of the controller designed by using the discrete fuzzy PI control and the PSO, we applied it to a wind turbine pitch controller. As a result, the proposed controller has variable gains, unlike the PI controller, and make the pitch controller operate in boarder operating regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Electric-Field-Based Nanowire Characterization, Manipulation, and Assembly Dynamic Sampling for Feasibility Determination Gripping Positions Selection for Unfolding a Rectangular Cloth Product Multi-Robot Routing Algorithms for Robots Operating in Vineyards Enhancing Data-Driven Models with Knowledge from Engineering Models in Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1