{"title":"来自普朗克质量的带电轻子的质谱","authors":"A. Kotkov","doi":"10.13189/ujpa.2016.100605","DOIUrl":null,"url":null,"abstract":"There are three generations of charged leptons - the electron, muon, and tau. Masses of elementary particles are considered as fundamental constants. Modern physics believes these masses could be calculated from more fundamental mass scale, e.g., the Planck mass. Scientists seek for such relationship for many years. However, a relation between mass-spectrum of charged leptons and the Planck mass is still unknown. Here we show a way to derive the mass-spectrum of charged leptons from the Planck mass.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"35 1","pages":"207-211"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass-spectrum of Charged Leptons from the Planck Mass\",\"authors\":\"A. Kotkov\",\"doi\":\"10.13189/ujpa.2016.100605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are three generations of charged leptons - the electron, muon, and tau. Masses of elementary particles are considered as fundamental constants. Modern physics believes these masses could be calculated from more fundamental mass scale, e.g., the Planck mass. Scientists seek for such relationship for many years. However, a relation between mass-spectrum of charged leptons and the Planck mass is still unknown. Here we show a way to derive the mass-spectrum of charged leptons from the Planck mass.\",\"PeriodicalId\":23443,\"journal\":{\"name\":\"Universal Journal of Physics and Application\",\"volume\":\"35 1\",\"pages\":\"207-211\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Physics and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/ujpa.2016.100605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Physics and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/ujpa.2016.100605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mass-spectrum of Charged Leptons from the Planck Mass
There are three generations of charged leptons - the electron, muon, and tau. Masses of elementary particles are considered as fundamental constants. Modern physics believes these masses could be calculated from more fundamental mass scale, e.g., the Planck mass. Scientists seek for such relationship for many years. However, a relation between mass-spectrum of charged leptons and the Planck mass is still unknown. Here we show a way to derive the mass-spectrum of charged leptons from the Planck mass.