Chen Yan, Cai Mengxiang, Zheng Mingyong, Kangshun Li
{"title":"基于混合均匀设计和博弈机制的多目标实用群优化","authors":"Chen Yan, Cai Mengxiang, Zheng Mingyong, Kangshun Li","doi":"10.4018/ijcini.301203","DOIUrl":null,"url":null,"abstract":"In recent years, multi-objective optimization algorithms, especially many-objective optimization algorithms, have developed rapidly and effectively.Among them, the algorithm based on particle swarm optimization has the characteristics of simple principle, few parameters and easy implementation. However, these algorithms still have some shortcomings, but also face the problems of falling into the local optimal solution, slow convergence speed and so on. In order to solve these problems, this paper proposes an algorithm called MUD-GMOPSO, A Many-Objective Practical Swarm Optimization based on Mixture Uniform Design and Game mechanism. In this paper, the two improved methods are combined, and the convergence speed, accuracy and robustness of the algorithm are greatly improved. In addition, the experimental results show that the algorithm has better performance than the four latest multi-objective or high-dimensional multi-objective optimization algorithms on three widely used benchmarks: DTLZ, WFG and MAF.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Many-Objective Practical Swarm Optimization Based on Mixture Uniform Design and Game Mechanism\",\"authors\":\"Chen Yan, Cai Mengxiang, Zheng Mingyong, Kangshun Li\",\"doi\":\"10.4018/ijcini.301203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, multi-objective optimization algorithms, especially many-objective optimization algorithms, have developed rapidly and effectively.Among them, the algorithm based on particle swarm optimization has the characteristics of simple principle, few parameters and easy implementation. However, these algorithms still have some shortcomings, but also face the problems of falling into the local optimal solution, slow convergence speed and so on. In order to solve these problems, this paper proposes an algorithm called MUD-GMOPSO, A Many-Objective Practical Swarm Optimization based on Mixture Uniform Design and Game mechanism. In this paper, the two improved methods are combined, and the convergence speed, accuracy and robustness of the algorithm are greatly improved. In addition, the experimental results show that the algorithm has better performance than the four latest multi-objective or high-dimensional multi-objective optimization algorithms on three widely used benchmarks: DTLZ, WFG and MAF.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijcini.301203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.301203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Many-Objective Practical Swarm Optimization Based on Mixture Uniform Design and Game Mechanism
In recent years, multi-objective optimization algorithms, especially many-objective optimization algorithms, have developed rapidly and effectively.Among them, the algorithm based on particle swarm optimization has the characteristics of simple principle, few parameters and easy implementation. However, these algorithms still have some shortcomings, but also face the problems of falling into the local optimal solution, slow convergence speed and so on. In order to solve these problems, this paper proposes an algorithm called MUD-GMOPSO, A Many-Objective Practical Swarm Optimization based on Mixture Uniform Design and Game mechanism. In this paper, the two improved methods are combined, and the convergence speed, accuracy and robustness of the algorithm are greatly improved. In addition, the experimental results show that the algorithm has better performance than the four latest multi-objective or high-dimensional multi-objective optimization algorithms on three widely used benchmarks: DTLZ, WFG and MAF.