基于深度卷积神经网络的番茄叶片病害识别

IF 2.4 4区 农林科学 Q2 AGRICULTURAL ENGINEERING Journal of Agricultural Engineering Pub Date : 2022-08-25 DOI:10.4081/jae.2022.1432
Kai Tian, Jiefeng Zeng, Tianci Song, Zhuliu Li, Asenso Evans, Jiuhao Li
{"title":"基于深度卷积神经网络的番茄叶片病害识别","authors":"Kai Tian, Jiefeng Zeng, Tianci Song, Zhuliu Li, Asenso Evans, Jiuhao Li","doi":"10.4081/jae.2022.1432","DOIUrl":null,"url":null,"abstract":"Tomato disease control remains a major challenge in the agriculture sector. Early stage recognition of these diseases is critical to reduce pesticide usage and mitigate economic losses. While many research works have been inspired by the success of deep learning in computer vision to improve the performance of recognition systems for crop diseases, few of these studies optimized the deep learning models to generalize their findings to practical use in the field. In this work, we proposed a model for identifying tomato leaf diseases based on both in-house data and public tomato leaf images databases. Three deep learning network architectures (VGG16, Inception_v3, and Resnet50) were trained and tested. We packaged the trained model into an Android application named TomatoGuard to identify nine kinds of tomato leaf diseases and healthy tomato leaf. The results showed that TomatoGuard could be adopted as a model for identifying tomato diseases with a 99% test accuracy, showing significantly better performance compared with APP Plantix, a widely used APP for general purpose plant disease detection.","PeriodicalId":48507,"journal":{"name":"Journal of Agricultural Engineering","volume":"9 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tomato leaf diseases recognition based on deep convolutional neural networks\",\"authors\":\"Kai Tian, Jiefeng Zeng, Tianci Song, Zhuliu Li, Asenso Evans, Jiuhao Li\",\"doi\":\"10.4081/jae.2022.1432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tomato disease control remains a major challenge in the agriculture sector. Early stage recognition of these diseases is critical to reduce pesticide usage and mitigate economic losses. While many research works have been inspired by the success of deep learning in computer vision to improve the performance of recognition systems for crop diseases, few of these studies optimized the deep learning models to generalize their findings to practical use in the field. In this work, we proposed a model for identifying tomato leaf diseases based on both in-house data and public tomato leaf images databases. Three deep learning network architectures (VGG16, Inception_v3, and Resnet50) were trained and tested. We packaged the trained model into an Android application named TomatoGuard to identify nine kinds of tomato leaf diseases and healthy tomato leaf. The results showed that TomatoGuard could be adopted as a model for identifying tomato diseases with a 99% test accuracy, showing significantly better performance compared with APP Plantix, a widely used APP for general purpose plant disease detection.\",\"PeriodicalId\":48507,\"journal\":{\"name\":\"Journal of Agricultural Engineering\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Agricultural Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.4081/jae.2022.1432\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Agricultural Engineering","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.4081/jae.2022.1432","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

摘要

番茄病害防治仍然是农业部门面临的一项重大挑战。早期识别这些疾病对于减少农药使用和减轻经济损失至关重要。虽然许多研究工作受到计算机视觉中深度学习成功的启发,以提高作物病害识别系统的性能,但这些研究很少优化深度学习模型,以将其发现推广到该领域的实际应用。在这项工作中,我们提出了一个基于内部数据和公共番茄叶片图像数据库的番茄叶片疾病识别模型。对三种深度学习网络架构(VGG16、Inception_v3和Resnet50)进行了训练和测试。我们将训练好的模型打包到一个名为TomatoGuard的Android应用程序中,用于识别9种番茄叶片疾病和健康番茄叶片。结果表明,TomatoGuard可以作为番茄病害识别的模型,测试准确率达到99%,与应用广泛的通用植物病害检测APP APP Plantix相比,表现出明显更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tomato leaf diseases recognition based on deep convolutional neural networks
Tomato disease control remains a major challenge in the agriculture sector. Early stage recognition of these diseases is critical to reduce pesticide usage and mitigate economic losses. While many research works have been inspired by the success of deep learning in computer vision to improve the performance of recognition systems for crop diseases, few of these studies optimized the deep learning models to generalize their findings to practical use in the field. In this work, we proposed a model for identifying tomato leaf diseases based on both in-house data and public tomato leaf images databases. Three deep learning network architectures (VGG16, Inception_v3, and Resnet50) were trained and tested. We packaged the trained model into an Android application named TomatoGuard to identify nine kinds of tomato leaf diseases and healthy tomato leaf. The results showed that TomatoGuard could be adopted as a model for identifying tomato diseases with a 99% test accuracy, showing significantly better performance compared with APP Plantix, a widely used APP for general purpose plant disease detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Agricultural Engineering
Journal of Agricultural Engineering AGRICULTURAL ENGINEERING-
CiteScore
2.30
自引率
5.60%
发文量
40
审稿时长
10 weeks
期刊介绍: The Journal of Agricultural Engineering (JAE) is the official journal of the Italian Society of Agricultural Engineering supported by University of Bologna, Italy. The subject matter covers a complete and interdisciplinary range of research in engineering for agriculture and biosystems.
期刊最新文献
Comparison of two different artificial neural network models for prediction of soil penetration resistance Apple recognition and picking sequence planning for harvesting robot in the complex environment Monitoring and multi-scenario simulation of agricultural land changes using Landsat imageries and FLUS model on coastal Alanya Variable-rate spray system for unmanned aerial applications using lag compensation algorithm and pulse width modulation spray technology Comparative analysis of 2D and 3D vineyard yield prediction system using artificial intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1