{"title":"欧拉方程及运动补偿中泛函最小值的迹线性质","authors":"R. March, G. Riey","doi":"10.3934/ipi.2021072","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We compute the Euler equations of a functional useful for simultaneous video inpainting and motion estimation, which was obtained in [<xref ref-type=\"bibr\" rid=\"b17\">17</xref>] as the relaxation of a modified version of the functional proposed in [<xref ref-type=\"bibr\" rid=\"b16\">16</xref>]. The functional is defined on vectorial functions of bounded variations, therefore we also get the Euler equations holding on the singular sets of minimizers, highlighting in particular the conditions on the jump sets. Such conditions are expressed by means of traces of geometrically meaningful vector fields and characterized as pointwise limits of averages on cylinders with axes parallel to the unit normals to the jump sets.</p>","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euler equations and trace properties of minimizers of a functional for motion compensated inpainting\",\"authors\":\"R. March, G. Riey\",\"doi\":\"10.3934/ipi.2021072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We compute the Euler equations of a functional useful for simultaneous video inpainting and motion estimation, which was obtained in [<xref ref-type=\\\"bibr\\\" rid=\\\"b17\\\">17</xref>] as the relaxation of a modified version of the functional proposed in [<xref ref-type=\\\"bibr\\\" rid=\\\"b16\\\">16</xref>]. The functional is defined on vectorial functions of bounded variations, therefore we also get the Euler equations holding on the singular sets of minimizers, highlighting in particular the conditions on the jump sets. Such conditions are expressed by means of traces of geometrically meaningful vector fields and characterized as pointwise limits of averages on cylinders with axes parallel to the unit normals to the jump sets.</p>\",\"PeriodicalId\":50274,\"journal\":{\"name\":\"Inverse Problems and Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems and Imaging\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/ipi.2021072\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2021072","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Euler equations and trace properties of minimizers of a functional for motion compensated inpainting
We compute the Euler equations of a functional useful for simultaneous video inpainting and motion estimation, which was obtained in [17] as the relaxation of a modified version of the functional proposed in [16]. The functional is defined on vectorial functions of bounded variations, therefore we also get the Euler equations holding on the singular sets of minimizers, highlighting in particular the conditions on the jump sets. Such conditions are expressed by means of traces of geometrically meaningful vector fields and characterized as pointwise limits of averages on cylinders with axes parallel to the unit normals to the jump sets.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.