俄罗斯东外贝加尔Darasunsky矿田金矿床石英中Al、Li杂质的存在形式、相互关系及成因意义

L. Rakov, V. Prokofiev, E. Minervina, L. D. Zorina
{"title":"俄罗斯东外贝加尔Darasunsky矿田金矿床石英中Al、Li杂质的存在形式、相互关系及成因意义","authors":"L. Rakov, V. Prokofiev, E. Minervina, L. D. Zorina","doi":"10.24930/1681-9004-2023-23-2-209-224","DOIUrl":null,"url":null,"abstract":"   Research subject. The distribution regularities of Al and Li impurities in gold-ore quartz.   Materials and methods. The quartz of the Darasun, Teremkinskoye and Talatuy gold deposits of the Darasun ore field was studied. The gross contents of Al and Li impurities in quartz were determined by the LA-ICP-MS method; substitutional Al impurity concentrations were studied by the EPR method. The forms of Al impurity in quartz were determined based on the results of studying its behavior during material recrystallization. The genetic significance of Al and Li impurities in quartz was estimated taking into account the genetic information obtained during the study of the distribution of substitutional Al and Ti impurity concentrations.   Results. It was found that Al is present in quartz in two main forms, i. e., as a substitutional Al impurity and Al complexes localized in the areas of high mineral defectiveness. Li+ ions are located in the structural channels of the mineral, serving as compensating ions for both Al impurity forms. The composition of Al complexes is assumed to include three Al3+ ions and one H+ or Li+ ion. Two stages of quartz recrystallization occurring at different temperatures of mineral formation were identified. The first, low-temperature stage leads to quartz enrichment with substitutional Al impurities. The second, high-temperature stage causes the decomposition of Al complexes. The recrystallization stages can be identified by the type of relationship between the gross concentrations of Al and Li. The increased content of Al impurity in ore quartz was found to be related to the presence of a large number of Al complexes. An assumption is made that these complexes formed during mineral crystallization from solutions with a high content of metal ions.   Conclusions. The results obtained indicate that high Al impurity concentrations can serve as a genetic sign of ore quartz. At the same time, the decomposition of Al complexes during quartz recrystallization should be taken into account. A method for estimating the initial concentration of Al complexes is proposed, which is a more reliable genetic indicator.","PeriodicalId":18202,"journal":{"name":"LITHOSPHERE (Russia)","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forms of presence, interrelation and genetic significance of Al and Li impurities in quartz of gold deposits of the Darasunsky ore field (Eastern Transbaikalia, Russia)\",\"authors\":\"L. Rakov, V. Prokofiev, E. Minervina, L. D. Zorina\",\"doi\":\"10.24930/1681-9004-2023-23-2-209-224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"   Research subject. The distribution regularities of Al and Li impurities in gold-ore quartz.   Materials and methods. The quartz of the Darasun, Teremkinskoye and Talatuy gold deposits of the Darasun ore field was studied. The gross contents of Al and Li impurities in quartz were determined by the LA-ICP-MS method; substitutional Al impurity concentrations were studied by the EPR method. The forms of Al impurity in quartz were determined based on the results of studying its behavior during material recrystallization. The genetic significance of Al and Li impurities in quartz was estimated taking into account the genetic information obtained during the study of the distribution of substitutional Al and Ti impurity concentrations.   Results. It was found that Al is present in quartz in two main forms, i. e., as a substitutional Al impurity and Al complexes localized in the areas of high mineral defectiveness. Li+ ions are located in the structural channels of the mineral, serving as compensating ions for both Al impurity forms. The composition of Al complexes is assumed to include three Al3+ ions and one H+ or Li+ ion. Two stages of quartz recrystallization occurring at different temperatures of mineral formation were identified. The first, low-temperature stage leads to quartz enrichment with substitutional Al impurities. The second, high-temperature stage causes the decomposition of Al complexes. The recrystallization stages can be identified by the type of relationship between the gross concentrations of Al and Li. The increased content of Al impurity in ore quartz was found to be related to the presence of a large number of Al complexes. An assumption is made that these complexes formed during mineral crystallization from solutions with a high content of metal ions.   Conclusions. The results obtained indicate that high Al impurity concentrations can serve as a genetic sign of ore quartz. At the same time, the decomposition of Al complexes during quartz recrystallization should be taken into account. A method for estimating the initial concentration of Al complexes is proposed, which is a more reliable genetic indicator.\",\"PeriodicalId\":18202,\"journal\":{\"name\":\"LITHOSPHERE (Russia)\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LITHOSPHERE (Russia)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24930/1681-9004-2023-23-2-209-224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LITHOSPHERE (Russia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24930/1681-9004-2023-23-2-209-224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究课题。金矿石石英中Al、Li杂质的分布规律。材料和方法。研究了达拉松矿田达拉松金矿床、Teremkinskoye金矿床和Talatuy金矿床的石英。采用LA-ICP-MS法测定石英中Al和Li杂质的总含量;用EPR法研究了取代Al杂质浓度。通过对材料再结晶过程中Al杂质行为的研究,确定了石英中Al杂质的形态。结合对石英中Al和Li杂质浓度分布的研究获得的遗传信息,估计了石英中Al和Li杂质的成因意义。结果。结果表明,铝在石英中主要以两种形式存在,即作为替代铝杂质和铝配合物存在于高矿物缺陷区。Li+离子位于矿物的结构通道中,作为两种Al杂质形式的补偿离子。Al配合物的组成假定包括三个Al3+离子和一个H+或Li+离子。确定了石英在不同矿物形成温度下的两个再结晶阶段。第一个低温阶段导致石英富集取代Al杂质。第二,高温阶段导致Al配合物的分解。再结晶阶段可以通过Al和Li总浓度之间的关系类型来确定。石英矿石中杂质Al含量的增加与大量Al配合物的存在有关。假设这些配合物是在含金属离子含量高的溶液结晶过程中形成的。结论。结果表明,高铝杂质浓度可作为矿石石英的成因标志。同时,应考虑石英再结晶过程中Al配合物的分解。提出了一种估算铝络合物初始浓度的方法,这是一种更可靠的遗传指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Forms of presence, interrelation and genetic significance of Al and Li impurities in quartz of gold deposits of the Darasunsky ore field (Eastern Transbaikalia, Russia)
   Research subject. The distribution regularities of Al and Li impurities in gold-ore quartz.   Materials and methods. The quartz of the Darasun, Teremkinskoye and Talatuy gold deposits of the Darasun ore field was studied. The gross contents of Al and Li impurities in quartz were determined by the LA-ICP-MS method; substitutional Al impurity concentrations were studied by the EPR method. The forms of Al impurity in quartz were determined based on the results of studying its behavior during material recrystallization. The genetic significance of Al and Li impurities in quartz was estimated taking into account the genetic information obtained during the study of the distribution of substitutional Al and Ti impurity concentrations.   Results. It was found that Al is present in quartz in two main forms, i. e., as a substitutional Al impurity and Al complexes localized in the areas of high mineral defectiveness. Li+ ions are located in the structural channels of the mineral, serving as compensating ions for both Al impurity forms. The composition of Al complexes is assumed to include three Al3+ ions and one H+ or Li+ ion. Two stages of quartz recrystallization occurring at different temperatures of mineral formation were identified. The first, low-temperature stage leads to quartz enrichment with substitutional Al impurities. The second, high-temperature stage causes the decomposition of Al complexes. The recrystallization stages can be identified by the type of relationship between the gross concentrations of Al and Li. The increased content of Al impurity in ore quartz was found to be related to the presence of a large number of Al complexes. An assumption is made that these complexes formed during mineral crystallization from solutions with a high content of metal ions.   Conclusions. The results obtained indicate that high Al impurity concentrations can serve as a genetic sign of ore quartz. At the same time, the decomposition of Al complexes during quartz recrystallization should be taken into account. A method for estimating the initial concentration of Al complexes is proposed, which is a more reliable genetic indicator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subsurface urban heat island in the city of Ekaterinburg Quartzites of the Khobeinskaya suite of the Subpolar Urals: Material composition, age limitations and possible sources of terrigenous material Palladium and platinum minerals in Au-Pd ores of the Chudnoe deposit (Subpolar Urals, Russia) Utilizing compositions of zircon and apatite for prospecting of Cu-Mo-Auporphyry mineralization in the Pekinsky and Tessemsky granitoid massifs of the Taimyr-Severozemelskaya folded area Carbonate-siliciclastic deposits of the Lower Uk Subformation (Neoproterozoic) in the stratotype section and its correlation within Bashkirian Mega-Anticlinorium of the Southern Urals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1