{"title":"垂直切片模型的粒子重标记对称性和诺特定理","authors":"C. Cotter, M. Cullen","doi":"10.3934/JGM.2019007","DOIUrl":null,"url":null,"abstract":"We consider the variational formulation for vertical slice models introduced in Cotter and Holm (Proc Roy Soc, 2013). These models have a Kelvin circulation theorem that holds on all materially-transported closed loops, not just those loops on isosurfaces of potential temperature. Potential vorticity conservation can be derived directly from this circulation theorem. In this paper, we show that this property is due to these models having a relabelling symmetry for every single diffeomorphism of the vertical slice that preserves the density, not just those diffeomorphisms that preserve the potential temperature. This is developed using the methodology of Cotter and Holm (Foundations of Computational Mathematics, 2012).","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"50 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Particle relabelling symmetries and Noether's theorem for vertical slice models\",\"authors\":\"C. Cotter, M. Cullen\",\"doi\":\"10.3934/JGM.2019007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the variational formulation for vertical slice models introduced in Cotter and Holm (Proc Roy Soc, 2013). These models have a Kelvin circulation theorem that holds on all materially-transported closed loops, not just those loops on isosurfaces of potential temperature. Potential vorticity conservation can be derived directly from this circulation theorem. In this paper, we show that this property is due to these models having a relabelling symmetry for every single diffeomorphism of the vertical slice that preserves the density, not just those diffeomorphisms that preserve the potential temperature. This is developed using the methodology of Cotter and Holm (Foundations of Computational Mathematics, 2012).\",\"PeriodicalId\":49161,\"journal\":{\"name\":\"Journal of Geometric Mechanics\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometric Mechanics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/JGM.2019007\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/JGM.2019007","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑Cotter和Holm引入的垂直切片模型的变分公式(Proc Roy Soc, 2013)。这些模型有一个开尔文循环定理,适用于所有物质运输的闭环,而不仅仅是位温等面上的环路。位涡守恒可以直接由这个循环定理推导出来。在本文中,我们证明了这一性质是由于这些模型对于保持密度的垂直切片的每一个微同态都具有重新标记对称性,而不仅仅是那些保持势温的微同态。这是使用Cotter和Holm(计算数学基础,2012)的方法开发的。
Particle relabelling symmetries and Noether's theorem for vertical slice models
We consider the variational formulation for vertical slice models introduced in Cotter and Holm (Proc Roy Soc, 2013). These models have a Kelvin circulation theorem that holds on all materially-transported closed loops, not just those loops on isosurfaces of potential temperature. Potential vorticity conservation can be derived directly from this circulation theorem. In this paper, we show that this property is due to these models having a relabelling symmetry for every single diffeomorphism of the vertical slice that preserves the density, not just those diffeomorphisms that preserve the potential temperature. This is developed using the methodology of Cotter and Holm (Foundations of Computational Mathematics, 2012).
期刊介绍:
The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:
1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences.