木质素衍生腐植酸制备与应用的最新进展。

Shrikanta Sutradhar, Pedram Fatehi
{"title":"木质素衍生腐植酸制备与应用的最新进展。","authors":"Shrikanta Sutradhar,&nbsp;Pedram Fatehi","doi":"10.1186/s13068-023-02278-3","DOIUrl":null,"url":null,"abstract":"<p><p>Humic substances (HS) are originated from naturally decaying biomass. The main products of HS are humic acids, fulvic acids, and humins. HS are extracted from natural origins (e.g., coals, lignite, forest, and river sediments). However, the production of HS from these resources is not environmentally friendly, potentially impacting ecological systems. Earlier theories claimed that the HS might be transformed from lignin by enzymatic or aerobic oxidation. On the other hand, lignin is a by-product of pulp and paper production processes and is available commercially. However, it is still under-utilized. To address the challenges of producing environmentally friendly HS and accommodating lignin in valorized processes, the production of lignin-derived HS has attracted attention. Currently, several chemical modification pathways can be followed to convert lignin into HS-like materials, such as alkaline aerobic oxidation, alkaline oxidative digestion, and oxidative ammonolysis of lignin. This review paper discusses the fundamental aspects of lignin transformation to HS comprehensively. The applications of natural HS and lignin-derived HS in various fields, such as soil enrichment, fertilizers, wastewater treatment, water decontamination, and medicines, were comprehensively discussed. Furthermore, the current challenges associated with the production and use of HS from lignin were described.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":"16 1","pages":"38"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989592/pdf/","citationCount":"4","resultStr":"{\"title\":\"Latest development in the fabrication and use of lignin-derived humic acid.\",\"authors\":\"Shrikanta Sutradhar,&nbsp;Pedram Fatehi\",\"doi\":\"10.1186/s13068-023-02278-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Humic substances (HS) are originated from naturally decaying biomass. The main products of HS are humic acids, fulvic acids, and humins. HS are extracted from natural origins (e.g., coals, lignite, forest, and river sediments). However, the production of HS from these resources is not environmentally friendly, potentially impacting ecological systems. Earlier theories claimed that the HS might be transformed from lignin by enzymatic or aerobic oxidation. On the other hand, lignin is a by-product of pulp and paper production processes and is available commercially. However, it is still under-utilized. To address the challenges of producing environmentally friendly HS and accommodating lignin in valorized processes, the production of lignin-derived HS has attracted attention. Currently, several chemical modification pathways can be followed to convert lignin into HS-like materials, such as alkaline aerobic oxidation, alkaline oxidative digestion, and oxidative ammonolysis of lignin. This review paper discusses the fundamental aspects of lignin transformation to HS comprehensively. The applications of natural HS and lignin-derived HS in various fields, such as soil enrichment, fertilizers, wastewater treatment, water decontamination, and medicines, were comprehensively discussed. Furthermore, the current challenges associated with the production and use of HS from lignin were described.</p>\",\"PeriodicalId\":9125,\"journal\":{\"name\":\"Biotechnology for Biofuels and Bioproducts\",\"volume\":\"16 1\",\"pages\":\"38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9989592/pdf/\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology for Biofuels and Bioproducts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s13068-023-02278-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13068-023-02278-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

腐殖质(HS)来源于自然腐烂的生物质。HS的主要产品是腐植酸、黄腐酸和人类素。HS是从自然来源(如煤、褐煤、森林和河流沉积物)中提取的。然而,从这些资源中生产HS并不环保,可能会影响生态系统。早期的理论认为HS可以通过酶促或有氧氧化从木质素转化而来。另一方面,木质素是纸浆和纸张生产过程的副产品,可在商业上获得。然而,它仍未得到充分利用。为了解决生产环境友好型HS和在稳定过程中容纳木质素的挑战,木质素衍生HS的生产引起了人们的关注。目前木质素转化为类hs物质的化学修饰途径有碱性好氧氧化、碱性氧化消化、氧化氨解等。本文全面论述了木质素转化为HS的基本方面。综述了天然HS和木质素衍生HS在土壤富集、肥料、废水处理、水净化、医药等领域的应用。此外,还介绍了目前木质素生产和利用HS所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Latest development in the fabrication and use of lignin-derived humic acid.

Humic substances (HS) are originated from naturally decaying biomass. The main products of HS are humic acids, fulvic acids, and humins. HS are extracted from natural origins (e.g., coals, lignite, forest, and river sediments). However, the production of HS from these resources is not environmentally friendly, potentially impacting ecological systems. Earlier theories claimed that the HS might be transformed from lignin by enzymatic or aerobic oxidation. On the other hand, lignin is a by-product of pulp and paper production processes and is available commercially. However, it is still under-utilized. To address the challenges of producing environmentally friendly HS and accommodating lignin in valorized processes, the production of lignin-derived HS has attracted attention. Currently, several chemical modification pathways can be followed to convert lignin into HS-like materials, such as alkaline aerobic oxidation, alkaline oxidative digestion, and oxidative ammonolysis of lignin. This review paper discusses the fundamental aspects of lignin transformation to HS comprehensively. The applications of natural HS and lignin-derived HS in various fields, such as soil enrichment, fertilizers, wastewater treatment, water decontamination, and medicines, were comprehensively discussed. Furthermore, the current challenges associated with the production and use of HS from lignin were described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alanine dehydrogenases from four different microorganisms: characterization and their application in L-alanine production. A high-throughput dual system to screen polyphosphate kinase mutants for efficient ATP regeneration in L-theanine biocatalysis. Unravelling and engineering an operon involved in the side-chain degradation of sterols in Mycolicibacterium neoaurum for the production of steroid synthons. Correction: Secretion of collagenases by Saccharomyces cerevisiae for collagen degradation. Engineering Saccharomyces cerevisiae for improved biofilm formation and ethanol production in continuous fermentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1