基于偏移向量场和期望最大化算法的微阵列图像处理

G. Weng, Jian Su
{"title":"基于偏移向量场和期望最大化算法的微阵列图像处理","authors":"G. Weng, Jian Su","doi":"10.1109/ICBBE.2010.5517774","DOIUrl":null,"url":null,"abstract":"DNA microarrays provide a simple tool to identify and quantify the gene expression for tens of thousands of genes simultaneously. Image processing is an important step in microarrays experiments. This paper presents a novel technique for removing gene's noises based on the offset vector field and segmenting genes using the expectation maximization algorithm. Simulations show that the new technique for microarray images filtering and segmentation has better performance than most of the common ways. The results of experiments are computationally attractive, have excellent performance and can preserve spots' data while efficiently suppress noises.","PeriodicalId":6396,"journal":{"name":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","volume":"23 5 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Microarray Images Processing Using the Offset Vector Field and Expectation Maximization Algorithm\",\"authors\":\"G. Weng, Jian Su\",\"doi\":\"10.1109/ICBBE.2010.5517774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA microarrays provide a simple tool to identify and quantify the gene expression for tens of thousands of genes simultaneously. Image processing is an important step in microarrays experiments. This paper presents a novel technique for removing gene's noises based on the offset vector field and segmenting genes using the expectation maximization algorithm. Simulations show that the new technique for microarray images filtering and segmentation has better performance than most of the common ways. The results of experiments are computationally attractive, have excellent performance and can preserve spots' data while efficiently suppress noises.\",\"PeriodicalId\":6396,\"journal\":{\"name\":\"2010 4th International Conference on Bioinformatics and Biomedical Engineering\",\"volume\":\"23 5 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 4th International Conference on Bioinformatics and Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBBE.2010.5517774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 4th International Conference on Bioinformatics and Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBBE.2010.5517774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

DNA微阵列提供了一种简单的工具,可以同时识别和量化成千上万个基因的基因表达。图像处理是微阵列实验的重要步骤。提出了一种基于偏移向量场的去除基因噪声的新方法,并利用期望最大化算法对基因进行分割。仿真结果表明,该方法对微阵列图像的滤波和分割具有较好的效果。实验结果在计算上具有吸引力,具有良好的性能,可以在有效抑制噪声的同时保留斑点数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microarray Images Processing Using the Offset Vector Field and Expectation Maximization Algorithm
DNA microarrays provide a simple tool to identify and quantify the gene expression for tens of thousands of genes simultaneously. Image processing is an important step in microarrays experiments. This paper presents a novel technique for removing gene's noises based on the offset vector field and segmenting genes using the expectation maximization algorithm. Simulations show that the new technique for microarray images filtering and segmentation has better performance than most of the common ways. The results of experiments are computationally attractive, have excellent performance and can preserve spots' data while efficiently suppress noises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of Codon Usage Bias in the Newly Identified DEV UL53 Gene Indoor Air Quality Assessment in an Art Gallery with an HVAC System Multi-Method Measurement on Mercury Concentration in Plants Optimization of Nutrition Condition for Biodegradation of Diesel Oil Using Response Surface Methodology Application of SWAT in Non-Point Source Pollution of Upper Xiliaohe Basin, China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1