无线多媒体传感器网络占空比控制优化的克隆混沌小生境进化算法

Jie Zhou, Mengying Xu, Rui Yang
{"title":"无线多媒体传感器网络占空比控制优化的克隆混沌小生境进化算法","authors":"Jie Zhou, Mengying Xu, Rui Yang","doi":"10.1109/ICIVC50857.2020.9177435","DOIUrl":null,"url":null,"abstract":"One of the most interesting issue regarding to wireless multimedia sensor networks (WMSNs) is to maximizing the network lifetime. Because sensor nodes are constrained in energy, it is very important and necessary to exploit novel duty cycle design algorithms. Such a problem is important in improving network lifetime in WMSNs. The new contribution of our paper is that we propose a clone chaotic niche evolutionary algorithm (CCNEA) for duty cycle design problem in WMSNs. Novel clone operator and chaotic operator have been designed to develop solutions randomly. The strategy merges the merits of clone selection, chaotic generation, and niche operator. CCNEA is a style of swarm algorithm, which has strong global exploit ability. CCNEA utilizes chaotic generation approach which targets to avoid local optima. Then, simulations are performed to verify the robust and efficacy performance of CCNEA compared to methods according to particle swarm optimization (PSO) and quantum genetic algorithm (QGA) under an WMSNs conditions. Simulation experiments denote that the presented CCNEA outperforms PSO and QGA under different conditions, especially for WMSNs that has large number of sensors.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"15 1","pages":"278-282"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clone Chaotic Niche Evolutionary Algorithm for Duty Cycle Control Optimization in Wireless Multimedia Sensor Networks\",\"authors\":\"Jie Zhou, Mengying Xu, Rui Yang\",\"doi\":\"10.1109/ICIVC50857.2020.9177435\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most interesting issue regarding to wireless multimedia sensor networks (WMSNs) is to maximizing the network lifetime. Because sensor nodes are constrained in energy, it is very important and necessary to exploit novel duty cycle design algorithms. Such a problem is important in improving network lifetime in WMSNs. The new contribution of our paper is that we propose a clone chaotic niche evolutionary algorithm (CCNEA) for duty cycle design problem in WMSNs. Novel clone operator and chaotic operator have been designed to develop solutions randomly. The strategy merges the merits of clone selection, chaotic generation, and niche operator. CCNEA is a style of swarm algorithm, which has strong global exploit ability. CCNEA utilizes chaotic generation approach which targets to avoid local optima. Then, simulations are performed to verify the robust and efficacy performance of CCNEA compared to methods according to particle swarm optimization (PSO) and quantum genetic algorithm (QGA) under an WMSNs conditions. Simulation experiments denote that the presented CCNEA outperforms PSO and QGA under different conditions, especially for WMSNs that has large number of sensors.\",\"PeriodicalId\":6806,\"journal\":{\"name\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"volume\":\"15 1\",\"pages\":\"278-282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIVC50857.2020.9177435\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

无线多媒体传感器网络(wmsn)中最令人感兴趣的问题之一是如何使网络的生存时间最大化。由于传感器节点受到能量的限制,开发新的占空比设计算法是非常重要和必要的。该问题对于提高wmsn的网络生存时间具有重要意义。本文的新贡献是我们提出了一种克隆混沌生态位进化算法(CCNEA)来解决wmsn的占空比设计问题。设计了新颖的克隆算子和混沌算子来随机求解。该策略融合了克隆选择、混沌生成和小生境算子的优点。CCNEA是一种群算法,具有较强的全局攻击能力。CCNEA采用混沌生成方法,以避免局部最优为目标。在WMSNs条件下,对比粒子群优化(PSO)和量子遗传算法(QGA),仿真验证了CCNEA算法的鲁棒性和有效性。仿真实验表明,本文提出的CCNEA算法在不同条件下都优于粒子群算法和QGA算法,特别是对于具有大量传感器的wmsn。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clone Chaotic Niche Evolutionary Algorithm for Duty Cycle Control Optimization in Wireless Multimedia Sensor Networks
One of the most interesting issue regarding to wireless multimedia sensor networks (WMSNs) is to maximizing the network lifetime. Because sensor nodes are constrained in energy, it is very important and necessary to exploit novel duty cycle design algorithms. Such a problem is important in improving network lifetime in WMSNs. The new contribution of our paper is that we propose a clone chaotic niche evolutionary algorithm (CCNEA) for duty cycle design problem in WMSNs. Novel clone operator and chaotic operator have been designed to develop solutions randomly. The strategy merges the merits of clone selection, chaotic generation, and niche operator. CCNEA is a style of swarm algorithm, which has strong global exploit ability. CCNEA utilizes chaotic generation approach which targets to avoid local optima. Then, simulations are performed to verify the robust and efficacy performance of CCNEA compared to methods according to particle swarm optimization (PSO) and quantum genetic algorithm (QGA) under an WMSNs conditions. Simulation experiments denote that the presented CCNEA outperforms PSO and QGA under different conditions, especially for WMSNs that has large number of sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Multi-object Tracking with Siamese Network and Optical Flow Research on Product Style Design Based on Genetic Algorithm Super-Resolution Reconstruction Algorithm of Target Image Based on Learning Background Air Quality Inference with Deep Convolutional Conditional Random Field Feature Point Extraction and Matching Method Based on Akaze in Illumination Invariant Color Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1