基于迭代量化方法的物理层安全加密机制研究

Weizhe Jing, D. Ma, Hua Yang, Min Guo, Qiang Xue, W. Liu, Yanyan Zhang, Yun Ju
{"title":"基于迭代量化方法的物理层安全加密机制研究","authors":"Weizhe Jing, D. Ma, Hua Yang, Min Guo, Qiang Xue, W. Liu, Yanyan Zhang, Yun Ju","doi":"10.3233/jcm-226746","DOIUrl":null,"url":null,"abstract":"Third-party eavesdropping is a unsolved problem in the process of data transmission in the physical layer of IoT (Internet of Things) in Power Systems. The security encryption effect is affected by channel noise and the half-duplex nature of the wireless channel, which leads to low key consistency and key generation rate. To address this problem, a reliable solution for physical layer communication security is proposed in this paper. First, the solution improved the key consistency by dynamically adjusting the length of the training sequence during feature extraction; Second, using an iterative quantization method to quantify the RSS (Received Signal Strength) measurements to improve generation rate of the key. Finally, based on the short-time energy method for the extraction of wireless frame interval features, by monitoring the change of inter-frame interval features, we can quickly determine whether there is an eavesdropping device into the link. Simulation results show that the reciprocity of legitimate channels R (R will be explained in detail in the following) is improved by 0.1, the key generation rate is increased by about 70%, and the beacon frames are extracted from the wireless link with good results compared to the methods that do not use dynamic adjustment of the pilot signal during the channel probing phase. The result shows that this method can effectively prevents third-party eavesdropping, effectively improves the key consistency and generation rate, and effectively implements beacon frame detection.","PeriodicalId":14668,"journal":{"name":"J. Comput. Methods Sci. Eng.","volume":"10 1","pages":"1883-1895"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on security encryption mechanism of physical Layer based on iterative quantization method\",\"authors\":\"Weizhe Jing, D. Ma, Hua Yang, Min Guo, Qiang Xue, W. Liu, Yanyan Zhang, Yun Ju\",\"doi\":\"10.3233/jcm-226746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Third-party eavesdropping is a unsolved problem in the process of data transmission in the physical layer of IoT (Internet of Things) in Power Systems. The security encryption effect is affected by channel noise and the half-duplex nature of the wireless channel, which leads to low key consistency and key generation rate. To address this problem, a reliable solution for physical layer communication security is proposed in this paper. First, the solution improved the key consistency by dynamically adjusting the length of the training sequence during feature extraction; Second, using an iterative quantization method to quantify the RSS (Received Signal Strength) measurements to improve generation rate of the key. Finally, based on the short-time energy method for the extraction of wireless frame interval features, by monitoring the change of inter-frame interval features, we can quickly determine whether there is an eavesdropping device into the link. Simulation results show that the reciprocity of legitimate channels R (R will be explained in detail in the following) is improved by 0.1, the key generation rate is increased by about 70%, and the beacon frames are extracted from the wireless link with good results compared to the methods that do not use dynamic adjustment of the pilot signal during the channel probing phase. The result shows that this method can effectively prevents third-party eavesdropping, effectively improves the key consistency and generation rate, and effectively implements beacon frame detection.\",\"PeriodicalId\":14668,\"journal\":{\"name\":\"J. Comput. Methods Sci. Eng.\",\"volume\":\"10 1\",\"pages\":\"1883-1895\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Comput. Methods Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcm-226746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Comput. Methods Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcm-226746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

第三方窃听是电力系统物联网物理层数据传输过程中尚未解决的问题。安全加密效果受信道噪声和无线信道半双工特性的影响,导致密钥一致性和密钥生成率较低。针对这一问题,本文提出了一种可靠的物理层通信安全解决方案。首先,通过在特征提取过程中动态调整训练序列的长度,提高了关键字的一致性;其次,采用迭代量化方法对接收信号强度(RSS)测量值进行量化,提高密钥的生成速率。最后,基于短时能量法提取无线帧间隔特征,通过监测帧间间隔特征的变化,可以快速判断链路中是否存在窃听设备。仿真结果表明,与在信道探测阶段不使用导频信号动态调整的方法相比,合法信道的互易性R (R将在下面详细说明)提高了0.1,密钥生成率提高了约70%,并且从无线链路中提取信标帧的效果较好。结果表明,该方法能有效防止第三方窃听,有效提高密钥一致性和生成速率,有效实现信标帧检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on security encryption mechanism of physical Layer based on iterative quantization method
Third-party eavesdropping is a unsolved problem in the process of data transmission in the physical layer of IoT (Internet of Things) in Power Systems. The security encryption effect is affected by channel noise and the half-duplex nature of the wireless channel, which leads to low key consistency and key generation rate. To address this problem, a reliable solution for physical layer communication security is proposed in this paper. First, the solution improved the key consistency by dynamically adjusting the length of the training sequence during feature extraction; Second, using an iterative quantization method to quantify the RSS (Received Signal Strength) measurements to improve generation rate of the key. Finally, based on the short-time energy method for the extraction of wireless frame interval features, by monitoring the change of inter-frame interval features, we can quickly determine whether there is an eavesdropping device into the link. Simulation results show that the reciprocity of legitimate channels R (R will be explained in detail in the following) is improved by 0.1, the key generation rate is increased by about 70%, and the beacon frames are extracted from the wireless link with good results compared to the methods that do not use dynamic adjustment of the pilot signal during the channel probing phase. The result shows that this method can effectively prevents third-party eavesdropping, effectively improves the key consistency and generation rate, and effectively implements beacon frame detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retracted to: Design and dynamics simulation of vehicle active occupant restraint protection system Flip-OFDM Optical MIMO Based VLC System Using ML/DL Approach Using the Structure-Behavior Coalescence Method to Formalize the Action Flow Semantics of UML 2.0 Activity Diagrams Accurate Calibration and Scalable Bandwidth Sharing of Multi-Queue SSDs Looking to Personalize Gaze Estimation Using Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1