Minh N. H. Nguyen, Nguyen H. Tran, M. A. Islam, Chuan Pham, Shaolei Ren, C. Hong
{"title":"无线基站中多运营商备用电源共享","authors":"Minh N. H. Nguyen, Nguyen H. Tran, M. A. Islam, Chuan Pham, Shaolei Ren, C. Hong","doi":"10.1109/NOMS.2018.8406244","DOIUrl":null,"url":null,"abstract":"Installation of backup power supply plays a vital role in maintaining communication services which can save billions of dollars as well as human lives during natural disasters. Due to the higher capital and operational expense compared to public power, pooling and sharing the backup power supplies can be an economical solution since the backup power capacity can be sized based on the aggregate demand of co-located operators. However, how to pool and share the backup power at multi-operator cellular sites in a fair manner should be considered due to the limited capacity and high user demands. In this paper, we adopt the Nash Bargaining Solution (NBS) of a bargaining problem which can guarantee the fairness of backup power sharing and design a decentralized algorithm approach with limited information exchange among the operators. Our simulation demonstrates that the sharing the backup power reduces the average delay and requires less BS power consumption than the non-sharing approach, especially for high traffic load scenarios. In addition, we also extend the formulation with respect to admission control for very high traffic demand cases.","PeriodicalId":19331,"journal":{"name":"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium","volume":"1 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-operator backup power sharing in wireless base stations\",\"authors\":\"Minh N. H. Nguyen, Nguyen H. Tran, M. A. Islam, Chuan Pham, Shaolei Ren, C. Hong\",\"doi\":\"10.1109/NOMS.2018.8406244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Installation of backup power supply plays a vital role in maintaining communication services which can save billions of dollars as well as human lives during natural disasters. Due to the higher capital and operational expense compared to public power, pooling and sharing the backup power supplies can be an economical solution since the backup power capacity can be sized based on the aggregate demand of co-located operators. However, how to pool and share the backup power at multi-operator cellular sites in a fair manner should be considered due to the limited capacity and high user demands. In this paper, we adopt the Nash Bargaining Solution (NBS) of a bargaining problem which can guarantee the fairness of backup power sharing and design a decentralized algorithm approach with limited information exchange among the operators. Our simulation demonstrates that the sharing the backup power reduces the average delay and requires less BS power consumption than the non-sharing approach, especially for high traffic load scenarios. In addition, we also extend the formulation with respect to admission control for very high traffic demand cases.\",\"PeriodicalId\":19331,\"journal\":{\"name\":\"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium\",\"volume\":\"1 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NOMS.2018.8406244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NOMS.2018.8406244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-operator backup power sharing in wireless base stations
Installation of backup power supply plays a vital role in maintaining communication services which can save billions of dollars as well as human lives during natural disasters. Due to the higher capital and operational expense compared to public power, pooling and sharing the backup power supplies can be an economical solution since the backup power capacity can be sized based on the aggregate demand of co-located operators. However, how to pool and share the backup power at multi-operator cellular sites in a fair manner should be considered due to the limited capacity and high user demands. In this paper, we adopt the Nash Bargaining Solution (NBS) of a bargaining problem which can guarantee the fairness of backup power sharing and design a decentralized algorithm approach with limited information exchange among the operators. Our simulation demonstrates that the sharing the backup power reduces the average delay and requires less BS power consumption than the non-sharing approach, especially for high traffic load scenarios. In addition, we also extend the formulation with respect to admission control for very high traffic demand cases.