Prasitthichai Naronglerdrit, I. Mporas, I. Perikos, M. Paraskevas
{"title":"基于卷积神经网络的色素皮肤病变分类","authors":"Prasitthichai Naronglerdrit, I. Mporas, I. Perikos, M. Paraskevas","doi":"10.1109/BIA48344.2019.8967469","DOIUrl":null,"url":null,"abstract":"In this paper we present an architecture for classification of pigmented skin lesions from dermatoscopic images. The architecture is using image pre-processing for natural hair removal and image segmentation for extraction of the skin lesion area. The segmented images were processed by a convolutional neural network classifier. The training process was done by using the Keras and TensorFlow python packets with CUDA supported. The best performance was achieved by a convolutional neural network architecture with three convolution layers and the classification accuracy was equal to 76.83%.","PeriodicalId":6688,"journal":{"name":"2019 International Conference on Biomedical Innovations and Applications (BIA)","volume":"40 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pigmented Skin Lesions Classification using Convolutional Neural Networks\",\"authors\":\"Prasitthichai Naronglerdrit, I. Mporas, I. Perikos, M. Paraskevas\",\"doi\":\"10.1109/BIA48344.2019.8967469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an architecture for classification of pigmented skin lesions from dermatoscopic images. The architecture is using image pre-processing for natural hair removal and image segmentation for extraction of the skin lesion area. The segmented images were processed by a convolutional neural network classifier. The training process was done by using the Keras and TensorFlow python packets with CUDA supported. The best performance was achieved by a convolutional neural network architecture with three convolution layers and the classification accuracy was equal to 76.83%.\",\"PeriodicalId\":6688,\"journal\":{\"name\":\"2019 International Conference on Biomedical Innovations and Applications (BIA)\",\"volume\":\"40 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biomedical Innovations and Applications (BIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIA48344.2019.8967469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biomedical Innovations and Applications (BIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIA48344.2019.8967469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pigmented Skin Lesions Classification using Convolutional Neural Networks
In this paper we present an architecture for classification of pigmented skin lesions from dermatoscopic images. The architecture is using image pre-processing for natural hair removal and image segmentation for extraction of the skin lesion area. The segmented images were processed by a convolutional neural network classifier. The training process was done by using the Keras and TensorFlow python packets with CUDA supported. The best performance was achieved by a convolutional neural network architecture with three convolution layers and the classification accuracy was equal to 76.83%.