基于卷积神经网络的色素皮肤病变分类

Prasitthichai Naronglerdrit, I. Mporas, I. Perikos, M. Paraskevas
{"title":"基于卷积神经网络的色素皮肤病变分类","authors":"Prasitthichai Naronglerdrit, I. Mporas, I. Perikos, M. Paraskevas","doi":"10.1109/BIA48344.2019.8967469","DOIUrl":null,"url":null,"abstract":"In this paper we present an architecture for classification of pigmented skin lesions from dermatoscopic images. The architecture is using image pre-processing for natural hair removal and image segmentation for extraction of the skin lesion area. The segmented images were processed by a convolutional neural network classifier. The training process was done by using the Keras and TensorFlow python packets with CUDA supported. The best performance was achieved by a convolutional neural network architecture with three convolution layers and the classification accuracy was equal to 76.83%.","PeriodicalId":6688,"journal":{"name":"2019 International Conference on Biomedical Innovations and Applications (BIA)","volume":"40 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pigmented Skin Lesions Classification using Convolutional Neural Networks\",\"authors\":\"Prasitthichai Naronglerdrit, I. Mporas, I. Perikos, M. Paraskevas\",\"doi\":\"10.1109/BIA48344.2019.8967469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present an architecture for classification of pigmented skin lesions from dermatoscopic images. The architecture is using image pre-processing for natural hair removal and image segmentation for extraction of the skin lesion area. The segmented images were processed by a convolutional neural network classifier. The training process was done by using the Keras and TensorFlow python packets with CUDA supported. The best performance was achieved by a convolutional neural network architecture with three convolution layers and the classification accuracy was equal to 76.83%.\",\"PeriodicalId\":6688,\"journal\":{\"name\":\"2019 International Conference on Biomedical Innovations and Applications (BIA)\",\"volume\":\"40 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Biomedical Innovations and Applications (BIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIA48344.2019.8967469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biomedical Innovations and Applications (BIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIA48344.2019.8967469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一种从皮肤镜图像中分类色素皮肤病变的架构。该架构使用图像预处理进行自然脱毛,图像分割提取皮肤病变区域。通过卷积神经网络分类器对分割后的图像进行处理。训练过程是通过使用支持CUDA的Keras和TensorFlow python包完成的。三层卷积神经网络结构的分类准确率达到76.83%,分类效果最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pigmented Skin Lesions Classification using Convolutional Neural Networks
In this paper we present an architecture for classification of pigmented skin lesions from dermatoscopic images. The architecture is using image pre-processing for natural hair removal and image segmentation for extraction of the skin lesion area. The segmented images were processed by a convolutional neural network classifier. The training process was done by using the Keras and TensorFlow python packets with CUDA supported. The best performance was achieved by a convolutional neural network architecture with three convolution layers and the classification accuracy was equal to 76.83%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CLAS: A Database for Cognitive Load, Affect and Stress Recognition Fucntional Modification of Upper Limb Prosthesis for Below Elbow Congential Deficiencies Application of Smart Contracts based on Ethereum Blockchain for the Purpose of Insurance Services Coping with missing data in an unobtrusive monitoring system for office workers An Approach to Improve Reliability of Vital Signs Monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1