{"title":"陡坡上土工合成衬砌系统应变和载荷计算的解析和数值模型","authors":"Yan Yu, R. K. Rowe","doi":"10.1139/cgj-2023-0123","DOIUrl":null,"url":null,"abstract":"The paper develops an analytical model based on the stress equilibrium for the design of steep slope geosynthetic liner systems to overcome downdrag loads from waste settlement. This analytical model calculates the required tensile stiffness for a high strength/stiffness geotextile (HS-GTX) reinforcement over the GMB to limit the maximum HS-GTX tensile strain to 5% and the maximum GMB strain to 4% on the side slope. The numerical model illustrates the need for reducing the GMB tensile strains for a single GMB liner on a steep landfill slope and confirms that the use of a HS-GTX over the GMB is able to limit the maximum HS-GTX and GMB tensile strains to the acceptable strain levels. The analytical model developed in this paper is a practical tool for preliminary design to limit tensile strains of the HS-GTX and GMB in a steep slope geosynthetic liner system.","PeriodicalId":9382,"journal":{"name":"Canadian Geotechnical Journal","volume":"85 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical and Numerical Models for Strain and Load Calculations for Geosynthetic Liner Systems on Steep Slopes\",\"authors\":\"Yan Yu, R. K. Rowe\",\"doi\":\"10.1139/cgj-2023-0123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper develops an analytical model based on the stress equilibrium for the design of steep slope geosynthetic liner systems to overcome downdrag loads from waste settlement. This analytical model calculates the required tensile stiffness for a high strength/stiffness geotextile (HS-GTX) reinforcement over the GMB to limit the maximum HS-GTX tensile strain to 5% and the maximum GMB strain to 4% on the side slope. The numerical model illustrates the need for reducing the GMB tensile strains for a single GMB liner on a steep landfill slope and confirms that the use of a HS-GTX over the GMB is able to limit the maximum HS-GTX and GMB tensile strains to the acceptable strain levels. The analytical model developed in this paper is a practical tool for preliminary design to limit tensile strains of the HS-GTX and GMB in a steep slope geosynthetic liner system.\",\"PeriodicalId\":9382,\"journal\":{\"name\":\"Canadian Geotechnical Journal\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Geotechnical Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1139/cgj-2023-0123\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Geotechnical Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1139/cgj-2023-0123","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Analytical and Numerical Models for Strain and Load Calculations for Geosynthetic Liner Systems on Steep Slopes
The paper develops an analytical model based on the stress equilibrium for the design of steep slope geosynthetic liner systems to overcome downdrag loads from waste settlement. This analytical model calculates the required tensile stiffness for a high strength/stiffness geotextile (HS-GTX) reinforcement over the GMB to limit the maximum HS-GTX tensile strain to 5% and the maximum GMB strain to 4% on the side slope. The numerical model illustrates the need for reducing the GMB tensile strains for a single GMB liner on a steep landfill slope and confirms that the use of a HS-GTX over the GMB is able to limit the maximum HS-GTX and GMB tensile strains to the acceptable strain levels. The analytical model developed in this paper is a practical tool for preliminary design to limit tensile strains of the HS-GTX and GMB in a steep slope geosynthetic liner system.
期刊介绍:
The Canadian Geotechnical Journal features articles, notes, reviews, and discussions related to new developments in geotechnical and geoenvironmental engineering, and applied sciences. The topics of papers written by researchers and engineers/scientists active in industry include soil and rock mechanics, material properties and fundamental behaviour, site characterization, foundations, excavations, tunnels, dams and embankments, slopes, landslides, geological and rock engineering, ground improvement, hydrogeology and contaminant hydrogeology, geochemistry, waste management, geosynthetics, offshore engineering, ice, frozen ground and northern engineering, risk and reliability applications, and physical and numerical modelling.
Contributions that have practical relevance are preferred, including case records. Purely theoretical contributions are not generally published unless they are on a topic of special interest (like unsaturated soil mechanics or cold regions geotechnics) or they have direct practical value.