Tongtong Chen, B. Dai, Daxue Liu, Hao Fu, Jinze Song
{"title":"基于似然场模型的Velodyne动态车辆检测","authors":"Tongtong Chen, B. Dai, Daxue Liu, Hao Fu, Jinze Song","doi":"10.1109/IHMSC.2015.201","DOIUrl":null,"url":null,"abstract":"Dynamic vehicle detection is an important module for Autonomous Land Vehicle (ALV) navigation in outdoor environments. In this paper, we present a novel dynamic vehicle detection algorithm based on the likelihood field model for an ALV equipped with a Velodyne LIDAR. An improved 2D virtual scan is utilized to detect the dynamic objects with the scan differencing operation. For every dynamic object, a vehicle is fitted with the likelihood field model, and the motion evidence and motion consistence of the fitted vehicle are exploited to classify the dynamic object into the vehicle or not. The performance of the algorithm is validated on the data collected by our ALV in various environments.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"446 1","pages":"497-502"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Likelihood-Field-Model-Based Dynamic Vehicle Detection with Velodyne\",\"authors\":\"Tongtong Chen, B. Dai, Daxue Liu, Hao Fu, Jinze Song\",\"doi\":\"10.1109/IHMSC.2015.201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic vehicle detection is an important module for Autonomous Land Vehicle (ALV) navigation in outdoor environments. In this paper, we present a novel dynamic vehicle detection algorithm based on the likelihood field model for an ALV equipped with a Velodyne LIDAR. An improved 2D virtual scan is utilized to detect the dynamic objects with the scan differencing operation. For every dynamic object, a vehicle is fitted with the likelihood field model, and the motion evidence and motion consistence of the fitted vehicle are exploited to classify the dynamic object into the vehicle or not. The performance of the algorithm is validated on the data collected by our ALV in various environments.\",\"PeriodicalId\":6592,\"journal\":{\"name\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"446 1\",\"pages\":\"497-502\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2015.201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Likelihood-Field-Model-Based Dynamic Vehicle Detection with Velodyne
Dynamic vehicle detection is an important module for Autonomous Land Vehicle (ALV) navigation in outdoor environments. In this paper, we present a novel dynamic vehicle detection algorithm based on the likelihood field model for an ALV equipped with a Velodyne LIDAR. An improved 2D virtual scan is utilized to detect the dynamic objects with the scan differencing operation. For every dynamic object, a vehicle is fitted with the likelihood field model, and the motion evidence and motion consistence of the fitted vehicle are exploited to classify the dynamic object into the vehicle or not. The performance of the algorithm is validated on the data collected by our ALV in various environments.