与化学提高采收率相关的生产化学问题和解决方案

G. Graham, D. Frigo
{"title":"与化学提高采收率相关的生产化学问题和解决方案","authors":"G. Graham, D. Frigo","doi":"10.2118/193568-MS","DOIUrl":null,"url":null,"abstract":"\n Chemical EOR is an increasingly employed approach used to enhance oil recovery by combining changes in fluids mobility, macroscopic sweep, interfacial tension, etc. to essentially improve, or extend the economic life of a water flood. It includes flooding with polymer, surfactant, alkaline/surfactant, alkaline-surfactant-polymer (ASP), CO2 and / or other miscible gases which is often combined with waterflood (e.g., CO2 WAG) etc. However, the improved oil recovery is often accompanied by physical and chemical changes in the produced fluids that cause many production-chemistry (PC)-related challenges when fluids subsequently arrive in the production system, including exacerbation of scale and naphthenates deposition, carboxylate deposits associated with injected polymer, enhanced corrosion and separation issues, etc. Understanding and predicting the production chemistry challenges at producers are further complicated by chemical changes as the fluids propagate through the reservoir such as reaction with reservoir formation minerals, chemical retention, chemical degradation and hydrolysis, etc. More importantly the implications for the production system and processing facilities are not always accounted for and proactively managed.\n The paper evaluates the main chemical changes that occur in the system for each EOR approach –– and shows how these changes, including in situ reservoir reactions and the stability/instability of the EOR packages themselves can exacerbate a range of PC-related challenges especially when considering the likely production of up to three different fluids: formation water, the EOR flood medium and any previous flood water from previous secondary recovery\n The paper includes modelling results, laboratory results to validate model predictions as well as examples from field case studies to illustrate the impact of the chemical changes referred to above. Specific highlights include the impact of the use of either high- or low-pH EOR fluids on scale control, corrosion control and asphaltenes control; for scale it examines both inhibitor performance per se as well as retention onto rock during squeeze treatment. Also illustrated are the risk of carboxylate-based deposit derived from polymer flood, and the phenomenon of carboxylate-based solids and soaps, which can exacerbate the separation of an already highly challenging system.\n The overall conclusion is that chemical EOR can have significant impact on PC and that these should not just be considered at the design stage and not just for the injection system but also to take into account the impact these may have on production wells following breakthrough of flood waters, showing that essentially each new or exacerbated PC issues can be predicted or at least anticipated with the required degree of confidence before implementation of EOR.","PeriodicalId":11243,"journal":{"name":"Day 2 Tue, April 09, 2019","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Production Chemistry Issues and Solutions Associated with Chemical EOR\",\"authors\":\"G. Graham, D. Frigo\",\"doi\":\"10.2118/193568-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Chemical EOR is an increasingly employed approach used to enhance oil recovery by combining changes in fluids mobility, macroscopic sweep, interfacial tension, etc. to essentially improve, or extend the economic life of a water flood. It includes flooding with polymer, surfactant, alkaline/surfactant, alkaline-surfactant-polymer (ASP), CO2 and / or other miscible gases which is often combined with waterflood (e.g., CO2 WAG) etc. However, the improved oil recovery is often accompanied by physical and chemical changes in the produced fluids that cause many production-chemistry (PC)-related challenges when fluids subsequently arrive in the production system, including exacerbation of scale and naphthenates deposition, carboxylate deposits associated with injected polymer, enhanced corrosion and separation issues, etc. Understanding and predicting the production chemistry challenges at producers are further complicated by chemical changes as the fluids propagate through the reservoir such as reaction with reservoir formation minerals, chemical retention, chemical degradation and hydrolysis, etc. More importantly the implications for the production system and processing facilities are not always accounted for and proactively managed.\\n The paper evaluates the main chemical changes that occur in the system for each EOR approach –– and shows how these changes, including in situ reservoir reactions and the stability/instability of the EOR packages themselves can exacerbate a range of PC-related challenges especially when considering the likely production of up to three different fluids: formation water, the EOR flood medium and any previous flood water from previous secondary recovery\\n The paper includes modelling results, laboratory results to validate model predictions as well as examples from field case studies to illustrate the impact of the chemical changes referred to above. Specific highlights include the impact of the use of either high- or low-pH EOR fluids on scale control, corrosion control and asphaltenes control; for scale it examines both inhibitor performance per se as well as retention onto rock during squeeze treatment. Also illustrated are the risk of carboxylate-based deposit derived from polymer flood, and the phenomenon of carboxylate-based solids and soaps, which can exacerbate the separation of an already highly challenging system.\\n The overall conclusion is that chemical EOR can have significant impact on PC and that these should not just be considered at the design stage and not just for the injection system but also to take into account the impact these may have on production wells following breakthrough of flood waters, showing that essentially each new or exacerbated PC issues can be predicted or at least anticipated with the required degree of confidence before implementation of EOR.\",\"PeriodicalId\":11243,\"journal\":{\"name\":\"Day 2 Tue, April 09, 2019\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, April 09, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/193568-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, April 09, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193568-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

化学提高采收率是一种越来越常用的方法,通过结合流体流动性、宏观波及、界面张力等变化来提高采收率,从而从根本上改善或延长注水的经济寿命。它包括聚合物、表面活性剂、碱性/表面活性剂、碱性-表面活性剂-聚合物(ASP)、二氧化碳和/或其他常与水驱(如CO2 WAG)联合使用的可混相气体等驱油。然而,采收率的提高通常伴随着采出液的物理和化学变化,当这些流体随后进入生产系统时,会导致许多与生产化学(PC)相关的挑战,包括垢和环烷酸盐沉积的加剧,与注入聚合物相关的羧酸盐沉积,腐蚀和分离问题的加剧等。随着流体在储层中的传播,化学变化(如与储层矿物的反应、化学滞留、化学降解和水解等)使理解和预测生产商的生产化学挑战变得更加复杂。更重要的是,对生产系统和加工设施的影响并不总是被考虑和主动管理。本文评估了每种EOR方法中系统中发生的主要化学变化,并展示了这些变化(包括储层原位反应和EOR包本身的稳定性/不稳定性)如何加剧与pc相关的一系列挑战,特别是考虑到可能生产多达三种不同的流体时:本文包括建模结果、验证模型预测的实验室结果以及现场案例研究的示例,以说明上述化学变化的影响。具体的重点包括使用高ph值或低ph值的提高采收率液对结垢控制、腐蚀控制和沥青质控制的影响;对于阻垢剂,它可以检测阻垢剂本身的性能以及在挤压处理过程中在岩石上的保留率。此外,还说明了聚合物驱产生羧酸盐沉积物的风险,以及羧酸盐固体和肥皂的现象,这些现象可能会加剧本已极具挑战性的体系的分离。总的结论是,化学提高采收率会对PC产生重大影响,不应该只在设计阶段考虑这些问题,也不应该只考虑注入系统,还应该考虑这些问题在洪水突破后对生产井的影响,这表明基本上每一个新的或加剧的PC问题都是可以预测的,或者至少在实施提高采收率之前有必要的信心进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production Chemistry Issues and Solutions Associated with Chemical EOR
Chemical EOR is an increasingly employed approach used to enhance oil recovery by combining changes in fluids mobility, macroscopic sweep, interfacial tension, etc. to essentially improve, or extend the economic life of a water flood. It includes flooding with polymer, surfactant, alkaline/surfactant, alkaline-surfactant-polymer (ASP), CO2 and / or other miscible gases which is often combined with waterflood (e.g., CO2 WAG) etc. However, the improved oil recovery is often accompanied by physical and chemical changes in the produced fluids that cause many production-chemistry (PC)-related challenges when fluids subsequently arrive in the production system, including exacerbation of scale and naphthenates deposition, carboxylate deposits associated with injected polymer, enhanced corrosion and separation issues, etc. Understanding and predicting the production chemistry challenges at producers are further complicated by chemical changes as the fluids propagate through the reservoir such as reaction with reservoir formation minerals, chemical retention, chemical degradation and hydrolysis, etc. More importantly the implications for the production system and processing facilities are not always accounted for and proactively managed. The paper evaluates the main chemical changes that occur in the system for each EOR approach –– and shows how these changes, including in situ reservoir reactions and the stability/instability of the EOR packages themselves can exacerbate a range of PC-related challenges especially when considering the likely production of up to three different fluids: formation water, the EOR flood medium and any previous flood water from previous secondary recovery The paper includes modelling results, laboratory results to validate model predictions as well as examples from field case studies to illustrate the impact of the chemical changes referred to above. Specific highlights include the impact of the use of either high- or low-pH EOR fluids on scale control, corrosion control and asphaltenes control; for scale it examines both inhibitor performance per se as well as retention onto rock during squeeze treatment. Also illustrated are the risk of carboxylate-based deposit derived from polymer flood, and the phenomenon of carboxylate-based solids and soaps, which can exacerbate the separation of an already highly challenging system. The overall conclusion is that chemical EOR can have significant impact on PC and that these should not just be considered at the design stage and not just for the injection system but also to take into account the impact these may have on production wells following breakthrough of flood waters, showing that essentially each new or exacerbated PC issues can be predicted or at least anticipated with the required degree of confidence before implementation of EOR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Barium Sulphate Scale Inhibitor for Chalk Solid Loaded Conditions Novel Laser-Hydrothermal Apparatus for Nucleation and Inhibition Study of Scale Minerals at Temperatures up to 250°C Effect of Corrosion–Inhibitor Chemistry on the Viscosity and Corrosion Rate of VES-Based Acids What Can We Learn from Analysis of Field Asphaltenes Deposits? Enhancing Product Development Through Knowledge-Based Field-to-Lab-to-Field Approach Novel Non-Aromatic Non-Ionic Surfactants to Target Deep Carbonate Stimulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1