认知无线电网络中智能频谱管理的新型机器学习方法

K. Bagadi;T. Abrao;F. Benedetto
{"title":"认知无线电网络中智能频谱管理的新型机器学习方法","authors":"K. Bagadi;T. Abrao;F. Benedetto","doi":"10.1109/LNET.2023.3300274","DOIUrl":null,"url":null,"abstract":"This letter proposes a novel hybrid spectrum management scheme combining transfer actor-critic learning (TACT) and Q-learning algorithms to improve the cognitive radio access network’s spectrum efficiency. The TACT algorithm improves its mean opinion score over time, while the Q-learning achieves faster convergence during spectral management. Thus, this letter seeks to alleviate resource constraints by better exploiting unused communication channels. Computer simulations are carried out compared to reinforcement learning and conventional TACT algorithms. The results evidence the efficiency of our approach for intelligent spectrum management in cognitive radio networks.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"5 4","pages":"232-236"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Machine Learning Approach for Intelligent Spectrum Management in Cognitive Radio Networks\",\"authors\":\"K. Bagadi;T. Abrao;F. Benedetto\",\"doi\":\"10.1109/LNET.2023.3300274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes a novel hybrid spectrum management scheme combining transfer actor-critic learning (TACT) and Q-learning algorithms to improve the cognitive radio access network’s spectrum efficiency. The TACT algorithm improves its mean opinion score over time, while the Q-learning achieves faster convergence during spectral management. Thus, this letter seeks to alleviate resource constraints by better exploiting unused communication channels. Computer simulations are carried out compared to reinforcement learning and conventional TACT algorithms. The results evidence the efficiency of our approach for intelligent spectrum management in cognitive radio networks.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"5 4\",\"pages\":\"232-236\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10197619/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10197619/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的混合频谱管理方案,结合了转移行为批评学习(TACT)和Q-learning算法,以提高认知无线电接入网络的频谱效率。随着时间的推移,TACT 算法会提高其平均意见得分,而 Q-learning 则会在频谱管理过程中实现更快的收敛。因此,这封信旨在通过更好地利用未使用的通信信道来缓解资源限制。我们进行了计算机模拟,将其与强化学习算法和传统的 TACT 算法进行了比较。结果证明了我们的方法在认知无线电网络中进行智能频谱管理的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Machine Learning Approach for Intelligent Spectrum Management in Cognitive Radio Networks
This letter proposes a novel hybrid spectrum management scheme combining transfer actor-critic learning (TACT) and Q-learning algorithms to improve the cognitive radio access network’s spectrum efficiency. The TACT algorithm improves its mean opinion score over time, while the Q-learning achieves faster convergence during spectral management. Thus, this letter seeks to alleviate resource constraints by better exploiting unused communication channels. Computer simulations are carried out compared to reinforcement learning and conventional TACT algorithms. The results evidence the efficiency of our approach for intelligent spectrum management in cognitive radio networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Networking Letters Author Guidelines IEEE COMMUNICATIONS SOCIETY IEEE Communications Society Optimal Classifier for an ML-Assisted Resource Allocation in Wireless Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1