反馈对抗学习:改进生成对抗网络的空间反馈

Minyoung Huh, Shao-Hua Sun, Ning Zhang
{"title":"反馈对抗学习:改进生成对抗网络的空间反馈","authors":"Minyoung Huh, Shao-Hua Sun, Ning Zhang","doi":"10.1109/CVPR.2019.00157","DOIUrl":null,"url":null,"abstract":"We propose feedback adversarial learning (FAL) framework that can improve existing generative adversarial networks by leveraging spatial feedback from the discriminator. We formulate the generation task as a recurrent framework, in which the discriminator’s feedback is integrated into the feedforward path of the generation process. Specifically, the generator conditions on the discriminator’s spatial output response, and its previous generation to improve generation quality over time – allowing the generator to attend and fix its previous mistakes. To effectively utilize the feedback, we propose an adaptive spatial transform layer, which learns to spatially modulate feature maps from its previous generation and the error signal from the discriminator. We demonstrate that one can easily adapt FAL to existing adversarial learning frameworks on a wide range of tasks, including image generation, image-to-image translation, and voxel generation.","PeriodicalId":6711,"journal":{"name":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"s3-35 1","pages":"1476-1485"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Feedback Adversarial Learning: Spatial Feedback for Improving Generative Adversarial Networks\",\"authors\":\"Minyoung Huh, Shao-Hua Sun, Ning Zhang\",\"doi\":\"10.1109/CVPR.2019.00157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose feedback adversarial learning (FAL) framework that can improve existing generative adversarial networks by leveraging spatial feedback from the discriminator. We formulate the generation task as a recurrent framework, in which the discriminator’s feedback is integrated into the feedforward path of the generation process. Specifically, the generator conditions on the discriminator’s spatial output response, and its previous generation to improve generation quality over time – allowing the generator to attend and fix its previous mistakes. To effectively utilize the feedback, we propose an adaptive spatial transform layer, which learns to spatially modulate feature maps from its previous generation and the error signal from the discriminator. We demonstrate that one can easily adapt FAL to existing adversarial learning frameworks on a wide range of tasks, including image generation, image-to-image translation, and voxel generation.\",\"PeriodicalId\":6711,\"journal\":{\"name\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"s3-35 1\",\"pages\":\"1476-1485\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2019.00157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2019.00157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

我们提出了反馈对抗学习(FAL)框架,该框架可以通过利用来自鉴别器的空间反馈来改进现有的生成对抗网络。我们将生成任务制定为一个循环框架,其中鉴别器的反馈集成到生成过程的前馈路径中。具体来说,发电机的条件是鉴别器的空间输出响应,以及它的上一代随着时间的推移提高发电质量——允许发电机参加并修复它以前的错误。为了有效地利用反馈,我们提出了一种自适应空间变换层,该层学习对上一代特征映射和鉴别器的误差信号进行空间调制。我们证明了FAL可以很容易地适应现有的对抗性学习框架,用于广泛的任务,包括图像生成、图像到图像的翻译和体素生成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feedback Adversarial Learning: Spatial Feedback for Improving Generative Adversarial Networks
We propose feedback adversarial learning (FAL) framework that can improve existing generative adversarial networks by leveraging spatial feedback from the discriminator. We formulate the generation task as a recurrent framework, in which the discriminator’s feedback is integrated into the feedforward path of the generation process. Specifically, the generator conditions on the discriminator’s spatial output response, and its previous generation to improve generation quality over time – allowing the generator to attend and fix its previous mistakes. To effectively utilize the feedback, we propose an adaptive spatial transform layer, which learns to spatially modulate feature maps from its previous generation and the error signal from the discriminator. We demonstrate that one can easily adapt FAL to existing adversarial learning frameworks on a wide range of tasks, including image generation, image-to-image translation, and voxel generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-Level Context Ultra-Aggregation for Stereo Matching Leveraging Heterogeneous Auxiliary Tasks to Assist Crowd Counting Incremental Object Learning From Contiguous Views Progressive Teacher-Student Learning for Early Action Prediction Inverse Discriminative Networks for Handwritten Signature Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1