粉煤灰共混聚合物复合材料的摩擦学性能

IF 0.5 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Materia-rio De Janeiro Pub Date : 2021-03-25 DOI:10.1590/S1517-707620210001.1229
I. Gunes, T. Uygunoğlu, A. Çelik
{"title":"粉煤灰共混聚合物复合材料的摩擦学性能","authors":"I. Gunes, T. Uygunoğlu, A. Çelik","doi":"10.1590/S1517-707620210001.1229","DOIUrl":null,"url":null,"abstract":"In this study, it was studied that the abrasion resistance and characteristics of polymer composites with fly ash (FA). The epoxy based polymer composites are produced with resin and FA as mineral additive. Mixtures of different ratio by replacing the FA were added to the resin from 0 to 30% by weight. Polymeric samples were cured in air conditioning and they were taken from the molds after 24 hours. Polymeric samples gain ultimate strength after 7 days. Therefore, abrasion tests were performed on 7 aged specimens. Abrasion characteristics of polymer composites were defined by pin-on-disc test for 500 m under a dry friction condition and room temperature. Three types of loading conditions were carried out as 5, 10, 15 and 30 N. The hardness and wear resistance values increased with the increase in the content of fly ash. Showing the relationship between wear rate and hardness, an equation with parameters dependent on load was provided. There was an increase in the friction coefficient with an increase in the surface roughness values. In addition, dynamic friction was as a function of the wear rate. The wear surfaces of the polymer composites were analyzed using scanning electron microscopy. It was observed that the wear rate of the polymer composites and pure epoxy samples ranged from 17.82 to 172.96 mm3/Nm. Keywords: Fly ash; polymer composite; characterization; wear; friction.","PeriodicalId":18260,"journal":{"name":"Materia-rio De Janeiro","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Tribological Properties of Fly Ash Blended Polymer Composites\",\"authors\":\"I. Gunes, T. Uygunoğlu, A. Çelik\",\"doi\":\"10.1590/S1517-707620210001.1229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, it was studied that the abrasion resistance and characteristics of polymer composites with fly ash (FA). The epoxy based polymer composites are produced with resin and FA as mineral additive. Mixtures of different ratio by replacing the FA were added to the resin from 0 to 30% by weight. Polymeric samples were cured in air conditioning and they were taken from the molds after 24 hours. Polymeric samples gain ultimate strength after 7 days. Therefore, abrasion tests were performed on 7 aged specimens. Abrasion characteristics of polymer composites were defined by pin-on-disc test for 500 m under a dry friction condition and room temperature. Three types of loading conditions were carried out as 5, 10, 15 and 30 N. The hardness and wear resistance values increased with the increase in the content of fly ash. Showing the relationship between wear rate and hardness, an equation with parameters dependent on load was provided. There was an increase in the friction coefficient with an increase in the surface roughness values. In addition, dynamic friction was as a function of the wear rate. The wear surfaces of the polymer composites were analyzed using scanning electron microscopy. It was observed that the wear rate of the polymer composites and pure epoxy samples ranged from 17.82 to 172.96 mm3/Nm. Keywords: Fly ash; polymer composite; characterization; wear; friction.\",\"PeriodicalId\":18260,\"journal\":{\"name\":\"Materia-rio De Janeiro\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materia-rio De Janeiro\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1590/S1517-707620210001.1229\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materia-rio De Janeiro","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1590/S1517-707620210001.1229","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

摘要

本文研究了粉煤灰(FA)聚合物复合材料的耐磨性及其性能。以树脂和FA为矿物添加剂制备了环氧基高分子复合材料。在树脂中加入不同比例的替代FA的混合物,其质量比为0 ~ 30%。聚合物样品在空调中固化,24小时后从模具中取出。聚合物样品在7天后获得极限强度。因此,对7个老化试件进行了磨损试验。在室温和干摩擦条件下,对聚合物复合材料的磨损特性进行了500 m的销盘试验。分别进行5、10、15、30 n 3种加载条件下,硬度和耐磨性随粉煤灰掺量的增加而增大。给出了磨损率与硬度之间的关系,并给出了参数随载荷变化的方程。摩擦系数随表面粗糙度值的增大而增大。此外,动态摩擦是磨损率的函数。利用扫描电镜对聚合物复合材料的磨损表面进行了分析。结果表明,聚合物复合材料和纯环氧树脂的磨损率在17.82 ~ 172.96 mm3/Nm之间。关键词:粉煤灰;聚合物复合材料;描述;穿;摩擦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tribological Properties of Fly Ash Blended Polymer Composites
In this study, it was studied that the abrasion resistance and characteristics of polymer composites with fly ash (FA). The epoxy based polymer composites are produced with resin and FA as mineral additive. Mixtures of different ratio by replacing the FA were added to the resin from 0 to 30% by weight. Polymeric samples were cured in air conditioning and they were taken from the molds after 24 hours. Polymeric samples gain ultimate strength after 7 days. Therefore, abrasion tests were performed on 7 aged specimens. Abrasion characteristics of polymer composites were defined by pin-on-disc test for 500 m under a dry friction condition and room temperature. Three types of loading conditions were carried out as 5, 10, 15 and 30 N. The hardness and wear resistance values increased with the increase in the content of fly ash. Showing the relationship between wear rate and hardness, an equation with parameters dependent on load was provided. There was an increase in the friction coefficient with an increase in the surface roughness values. In addition, dynamic friction was as a function of the wear rate. The wear surfaces of the polymer composites were analyzed using scanning electron microscopy. It was observed that the wear rate of the polymer composites and pure epoxy samples ranged from 17.82 to 172.96 mm3/Nm. Keywords: Fly ash; polymer composite; characterization; wear; friction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materia-rio De Janeiro
Materia-rio De Janeiro MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
25.00%
发文量
51
审稿时长
6 weeks
期刊介绍: All the articles are submitted to a careful peer-reviewing evaluation process by the journal''s Editorial Board. The Editorial Board, reviewers and authors make use of a web based proprietary automated tool to deal with the reviewing procedures.the Revista Matéria''s article reviewing restricted access system - SEER. Authors are not informed about the identity of the reviewers.
期刊最新文献
Structural performance of hybrid FRP laminates on concrete beams made with manufactured sand Incorporação de fibras de papel kraft provenientes de embalagens de cimento pós-uso para produção de pisogramas de concreto Synthesized activated carbon derived from discarded styrofoam and effectively removal of nickel (II) from aqueous solutions The effect of chloride, sulfate, and ammonium ions on the semiconducting behavior and corrosion resistance of AISI 304 stainless steel passive film Mechanical properties of asphalt mixtures containing reclaimed asphalt incorporating Acrylonitrile Butadiene Styrene (ABS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1