基于卷积神经网络的菠萝蜜果实损伤分类

J. F. V. Oraño, Elmer A. Maravillas, Chris Jordan G. Aliac
{"title":"基于卷积神经网络的菠萝蜜果实损伤分类","authors":"J. F. V. Oraño, Elmer A. Maravillas, Chris Jordan G. Aliac","doi":"10.1109/HNICEM48295.2019.9073341","DOIUrl":null,"url":null,"abstract":"Insufficient understanding on the incidence of plant pests and diseases as well as on the appropriate cultural practices against them may worsen the damage and caused a tremendous loss on fruit production. The use of mobile-based solution will significantly contribute on the availability and accessibility of human expert’s knowledge on this domain. In this study, a convolutional neural network was used and deployed on an android-based mobile application to perform detection and diagnosis of jackfruit fruit damages caused by pests (fruit borer and fruit fly) and diseases (rhizopus fruit rot and sclerotium fruit rot). The sequential type model was implemented which is mainly composed of 3 convolutional layers, each activated by a Rectified Linear Unit function and followed by a max pooling layer, and finally 2 dense layers. The model was trained using a total of 2409 images, and when evaluated on a validation dataset with 516 images, a loss rate of 4.58% and an accuracy rate of 97.93% were attained. On the other hand, when it was tested to predict on another set of 516 images, a remarkable success rate of 97.87% was obtained. The result indicates that the application can carry out a reliable and real time assessment on pest infestation and disease infection. Likewise, it provides recommendations on fruit protection measures.","PeriodicalId":6733,"journal":{"name":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","volume":"60 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Jackfruit Fruit Damage Classification using Convolutional Neural Network\",\"authors\":\"J. F. V. Oraño, Elmer A. Maravillas, Chris Jordan G. Aliac\",\"doi\":\"10.1109/HNICEM48295.2019.9073341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insufficient understanding on the incidence of plant pests and diseases as well as on the appropriate cultural practices against them may worsen the damage and caused a tremendous loss on fruit production. The use of mobile-based solution will significantly contribute on the availability and accessibility of human expert’s knowledge on this domain. In this study, a convolutional neural network was used and deployed on an android-based mobile application to perform detection and diagnosis of jackfruit fruit damages caused by pests (fruit borer and fruit fly) and diseases (rhizopus fruit rot and sclerotium fruit rot). The sequential type model was implemented which is mainly composed of 3 convolutional layers, each activated by a Rectified Linear Unit function and followed by a max pooling layer, and finally 2 dense layers. The model was trained using a total of 2409 images, and when evaluated on a validation dataset with 516 images, a loss rate of 4.58% and an accuracy rate of 97.93% were attained. On the other hand, when it was tested to predict on another set of 516 images, a remarkable success rate of 97.87% was obtained. The result indicates that the application can carry out a reliable and real time assessment on pest infestation and disease infection. Likewise, it provides recommendations on fruit protection measures.\",\"PeriodicalId\":6733,\"journal\":{\"name\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"volume\":\"60 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HNICEM48295.2019.9073341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM48295.2019.9073341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

对植物病虫害的发生以及防治病虫害的适当栽培方法了解不足,可能会使损害加重,并对果实生产造成巨大损失。基于移动的解决方案的使用将大大有助于人类专家在这一领域的知识的可用性和可访问性。本研究利用卷积神经网络在基于android的移动应用程序上进行了菠萝蜜果实病虫害(果螟和果蝇)和病害(根霉腐病和菌核腐病)的检测和诊断。实现了顺序型模型,该模型主要由3个卷积层组成,每个卷积层由一个Rectified Linear Unit函数激活,然后是一个max pooling层,最后是2个密集层。该模型共使用2409张图像进行训练,在516张图像的验证数据集上进行评估,失误率为4.58%,准确率为97.93%。另一方面,当对另一组516张图像进行预测测试时,成功率达到了97.87%。结果表明,该应用程序可对病虫害进行实时、可靠的评估。同样,它还就水果保护措施提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Jackfruit Fruit Damage Classification using Convolutional Neural Network
Insufficient understanding on the incidence of plant pests and diseases as well as on the appropriate cultural practices against them may worsen the damage and caused a tremendous loss on fruit production. The use of mobile-based solution will significantly contribute on the availability and accessibility of human expert’s knowledge on this domain. In this study, a convolutional neural network was used and deployed on an android-based mobile application to perform detection and diagnosis of jackfruit fruit damages caused by pests (fruit borer and fruit fly) and diseases (rhizopus fruit rot and sclerotium fruit rot). The sequential type model was implemented which is mainly composed of 3 convolutional layers, each activated by a Rectified Linear Unit function and followed by a max pooling layer, and finally 2 dense layers. The model was trained using a total of 2409 images, and when evaluated on a validation dataset with 516 images, a loss rate of 4.58% and an accuracy rate of 97.93% were attained. On the other hand, when it was tested to predict on another set of 516 images, a remarkable success rate of 97.87% was obtained. The result indicates that the application can carry out a reliable and real time assessment on pest infestation and disease infection. Likewise, it provides recommendations on fruit protection measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovations on Advanced Transportation Systems for Local Applications An Aquaculture-Based Binary Classifier for Fish Detection using Multilayer Artificial Neural Network Design and Analysis of Hip Joint DOFs for Lower Limb Robotic Exoskeleton Sum of Absolute Difference-based Rate-Distortion Optimization Cost Function for H.265/HEVC Intra-Mode Prediction Optimization and drying kinetics of the convective drying of microalgal biomat (lab-lab)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1