{"title":"弱监督可视性检测","authors":"Johann Sawatzky, A. Srikantha, Juergen Gall","doi":"10.1109/CVPR.2017.552","DOIUrl":null,"url":null,"abstract":"Localizing functional regions of objects or affordances is an important aspect of scene understanding and relevant for many robotics applications. In this work, we introduce a pixel-wise annotated affordance dataset of 3090 images containing 9916 object instances. Since parts of an object can have multiple affordances, we address this by a convolutional neural network for multilabel affordance segmentation. We also propose an approach to train the network from very few keypoint annotations. Our approach achieves a higher affordance detection accuracy than other weakly supervised methods that also rely on keypoint annotations or image annotations as weak supervision.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"13 1","pages":"5197-5206"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Weakly Supervised Affordance Detection\",\"authors\":\"Johann Sawatzky, A. Srikantha, Juergen Gall\",\"doi\":\"10.1109/CVPR.2017.552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localizing functional regions of objects or affordances is an important aspect of scene understanding and relevant for many robotics applications. In this work, we introduce a pixel-wise annotated affordance dataset of 3090 images containing 9916 object instances. Since parts of an object can have multiple affordances, we address this by a convolutional neural network for multilabel affordance segmentation. We also propose an approach to train the network from very few keypoint annotations. Our approach achieves a higher affordance detection accuracy than other weakly supervised methods that also rely on keypoint annotations or image annotations as weak supervision.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"13 1\",\"pages\":\"5197-5206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Localizing functional regions of objects or affordances is an important aspect of scene understanding and relevant for many robotics applications. In this work, we introduce a pixel-wise annotated affordance dataset of 3090 images containing 9916 object instances. Since parts of an object can have multiple affordances, we address this by a convolutional neural network for multilabel affordance segmentation. We also propose an approach to train the network from very few keypoint annotations. Our approach achieves a higher affordance detection accuracy than other weakly supervised methods that also rely on keypoint annotations or image annotations as weak supervision.