Jianmei Liu, Q. Lin, Yu Zhou, J. Dai, Yongsheng Han
{"title":"选择结晶路线合成形状可控的银颗粒","authors":"Jianmei Liu, Q. Lin, Yu Zhou, J. Dai, Yongsheng Han","doi":"10.14356/KONA.2020004","DOIUrl":null,"url":null,"abstract":"Classic crystallization describes a burst nucleation followed by a layer-by-layer atom deposition. The non-classic crystallization refers to particle mediated crystallization process. Different crystallization routes lead to the formation of diverse structured materials. Here we report a rational synthesis of silver particles by selecting the crystallization routes. Silver particles were synthesized by a solution reduction approach. The crystallization routes were regulated by adding amino acids to stabilize silver ions which leads to the decrease of the reduction rate. Without amino acids, silver dendrites were largely formed. With the addition of amino acids, flower-like (low concentration of amino acids) and spherical silver (high concentration of amino acid) particles were synthesized. Three kinds of amino acids were tested and the similar results were obtained. The time-dependent characterization on the evolution of silver particles showed that silver dendrites were formed by the classic atom deposition while the other two morphologies were formed by the combination of classic and non-classic crystallization. The silver particles synthesized were evaluated for ethylene epoxidation and the dendritic particles demonstrated a high selectivity.","PeriodicalId":17828,"journal":{"name":"KONA Powder and Particle Journal","volume":"76 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Shape Controllable Synthesis of Silver Particles by Selecting the Crystallization Routes\",\"authors\":\"Jianmei Liu, Q. Lin, Yu Zhou, J. Dai, Yongsheng Han\",\"doi\":\"10.14356/KONA.2020004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classic crystallization describes a burst nucleation followed by a layer-by-layer atom deposition. The non-classic crystallization refers to particle mediated crystallization process. Different crystallization routes lead to the formation of diverse structured materials. Here we report a rational synthesis of silver particles by selecting the crystallization routes. Silver particles were synthesized by a solution reduction approach. The crystallization routes were regulated by adding amino acids to stabilize silver ions which leads to the decrease of the reduction rate. Without amino acids, silver dendrites were largely formed. With the addition of amino acids, flower-like (low concentration of amino acids) and spherical silver (high concentration of amino acid) particles were synthesized. Three kinds of amino acids were tested and the similar results were obtained. The time-dependent characterization on the evolution of silver particles showed that silver dendrites were formed by the classic atom deposition while the other two morphologies were formed by the combination of classic and non-classic crystallization. The silver particles synthesized were evaluated for ethylene epoxidation and the dendritic particles demonstrated a high selectivity.\",\"PeriodicalId\":17828,\"journal\":{\"name\":\"KONA Powder and Particle Journal\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2020-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KONA Powder and Particle Journal\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.14356/KONA.2020004\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KONA Powder and Particle Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.14356/KONA.2020004","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Shape Controllable Synthesis of Silver Particles by Selecting the Crystallization Routes
Classic crystallization describes a burst nucleation followed by a layer-by-layer atom deposition. The non-classic crystallization refers to particle mediated crystallization process. Different crystallization routes lead to the formation of diverse structured materials. Here we report a rational synthesis of silver particles by selecting the crystallization routes. Silver particles were synthesized by a solution reduction approach. The crystallization routes were regulated by adding amino acids to stabilize silver ions which leads to the decrease of the reduction rate. Without amino acids, silver dendrites were largely formed. With the addition of amino acids, flower-like (low concentration of amino acids) and spherical silver (high concentration of amino acid) particles were synthesized. Three kinds of amino acids were tested and the similar results were obtained. The time-dependent characterization on the evolution of silver particles showed that silver dendrites were formed by the classic atom deposition while the other two morphologies were formed by the combination of classic and non-classic crystallization. The silver particles synthesized were evaluated for ethylene epoxidation and the dendritic particles demonstrated a high selectivity.
期刊介绍:
KONA publishes papers in the broad field of powder science and technology, ranging from fundamental principles to practical applications. Papers describing technological experience and critical reviews of existing knowledge in special areas are also welcome.