{"title":"一种基于自动特征选择的强滚动快门效果校正方法","authors":"Yizhen Lao, Omar Ait-Aider","doi":"10.1109/CVPR.2018.00504","DOIUrl":null,"url":null,"abstract":"We present a robust method which compensates RS distortions in a single image using a set of image curves, basing on the knowledge that they correspond to 3D straight lines. Unlike in existing work, no a priori knowledge about the line directions (e.g. Manhattan World assumption) is required. We first formulate a parametric equation for the projection of a 3D straight line viewed by a moving rolling shutter camera under a uniform motion model. Then we propose a method which efficiently estimates ego angular velocity separately from pose parameters, using at least 4 image curves. Moreover, we propose for the first time a RANSAC-like strategy to select image curves which really correspond to 3D straight lines and reject those corresponding to actual curves in 3D world. A comparative experimental study with both synthetic and real data from famous benchmarks shows that the proposed method outperforms all the existing techniques from the state-of-the-art.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"50 1","pages":"4795-4803"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"A Robust Method for Strong Rolling Shutter Effects Correction Using Lines with Automatic Feature Selection\",\"authors\":\"Yizhen Lao, Omar Ait-Aider\",\"doi\":\"10.1109/CVPR.2018.00504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a robust method which compensates RS distortions in a single image using a set of image curves, basing on the knowledge that they correspond to 3D straight lines. Unlike in existing work, no a priori knowledge about the line directions (e.g. Manhattan World assumption) is required. We first formulate a parametric equation for the projection of a 3D straight line viewed by a moving rolling shutter camera under a uniform motion model. Then we propose a method which efficiently estimates ego angular velocity separately from pose parameters, using at least 4 image curves. Moreover, we propose for the first time a RANSAC-like strategy to select image curves which really correspond to 3D straight lines and reject those corresponding to actual curves in 3D world. A comparative experimental study with both synthetic and real data from famous benchmarks shows that the proposed method outperforms all the existing techniques from the state-of-the-art.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"50 1\",\"pages\":\"4795-4803\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Robust Method for Strong Rolling Shutter Effects Correction Using Lines with Automatic Feature Selection
We present a robust method which compensates RS distortions in a single image using a set of image curves, basing on the knowledge that they correspond to 3D straight lines. Unlike in existing work, no a priori knowledge about the line directions (e.g. Manhattan World assumption) is required. We first formulate a parametric equation for the projection of a 3D straight line viewed by a moving rolling shutter camera under a uniform motion model. Then we propose a method which efficiently estimates ego angular velocity separately from pose parameters, using at least 4 image curves. Moreover, we propose for the first time a RANSAC-like strategy to select image curves which really correspond to 3D straight lines and reject those corresponding to actual curves in 3D world. A comparative experimental study with both synthetic and real data from famous benchmarks shows that the proposed method outperforms all the existing techniques from the state-of-the-art.