一种基于自动特征选择的强滚动快门效果校正方法

Yizhen Lao, Omar Ait-Aider
{"title":"一种基于自动特征选择的强滚动快门效果校正方法","authors":"Yizhen Lao, Omar Ait-Aider","doi":"10.1109/CVPR.2018.00504","DOIUrl":null,"url":null,"abstract":"We present a robust method which compensates RS distortions in a single image using a set of image curves, basing on the knowledge that they correspond to 3D straight lines. Unlike in existing work, no a priori knowledge about the line directions (e.g. Manhattan World assumption) is required. We first formulate a parametric equation for the projection of a 3D straight line viewed by a moving rolling shutter camera under a uniform motion model. Then we propose a method which efficiently estimates ego angular velocity separately from pose parameters, using at least 4 image curves. Moreover, we propose for the first time a RANSAC-like strategy to select image curves which really correspond to 3D straight lines and reject those corresponding to actual curves in 3D world. A comparative experimental study with both synthetic and real data from famous benchmarks shows that the proposed method outperforms all the existing techniques from the state-of-the-art.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"50 1","pages":"4795-4803"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"A Robust Method for Strong Rolling Shutter Effects Correction Using Lines with Automatic Feature Selection\",\"authors\":\"Yizhen Lao, Omar Ait-Aider\",\"doi\":\"10.1109/CVPR.2018.00504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a robust method which compensates RS distortions in a single image using a set of image curves, basing on the knowledge that they correspond to 3D straight lines. Unlike in existing work, no a priori knowledge about the line directions (e.g. Manhattan World assumption) is required. We first formulate a parametric equation for the projection of a 3D straight line viewed by a moving rolling shutter camera under a uniform motion model. Then we propose a method which efficiently estimates ego angular velocity separately from pose parameters, using at least 4 image curves. Moreover, we propose for the first time a RANSAC-like strategy to select image curves which really correspond to 3D straight lines and reject those corresponding to actual curves in 3D world. A comparative experimental study with both synthetic and real data from famous benchmarks shows that the proposed method outperforms all the existing techniques from the state-of-the-art.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"50 1\",\"pages\":\"4795-4803\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

我们提出了一种鲁棒的方法,该方法使用一组图像曲线来补偿单个图像中的RS失真,基于它们对应于3D直线的知识。与现有工作不同,不需要关于线方向的先验知识(例如曼哈顿世界假设)。我们首先建立了均匀运动模型下运动卷帘式相机所观察到的三维直线投影的参数方程。然后,我们提出了一种至少使用4条图像曲线独立于姿态参数有效估计自我角速度的方法。此外,我们首次提出了一种类似ransac的策略来选择真正对应于三维直线的图像曲线,并拒绝对应于三维世界中实际曲线的图像曲线。与著名基准测试的合成数据和真实数据进行对比实验研究表明,该方法优于现有的所有最新技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Robust Method for Strong Rolling Shutter Effects Correction Using Lines with Automatic Feature Selection
We present a robust method which compensates RS distortions in a single image using a set of image curves, basing on the knowledge that they correspond to 3D straight lines. Unlike in existing work, no a priori knowledge about the line directions (e.g. Manhattan World assumption) is required. We first formulate a parametric equation for the projection of a 3D straight line viewed by a moving rolling shutter camera under a uniform motion model. Then we propose a method which efficiently estimates ego angular velocity separately from pose parameters, using at least 4 image curves. Moreover, we propose for the first time a RANSAC-like strategy to select image curves which really correspond to 3D straight lines and reject those corresponding to actual curves in 3D world. A comparative experimental study with both synthetic and real data from famous benchmarks shows that the proposed method outperforms all the existing techniques from the state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multistage Adversarial Losses for Pose-Based Human Image Synthesis Document Enhancement Using Visibility Detection Demo2Vec: Reasoning Object Affordances from Online Videos Planar Shape Detection at Structural Scales Where and Why are They Looking? Jointly Inferring Human Attention and Intentions in Complex Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1