{"title":"纳米晶半导体电极中的电荷转移","authors":"M. Bouroushian","doi":"10.1155/2013/953153","DOIUrl":null,"url":null,"abstract":"Nanocrystalline electrodes in liquid junction devices possess a number of unique properties arising from their convoluted structure and the dimensions of their building units. The light-induced charge separation and transport in photoelectrochemical systems using nanocrystalline/nanoporous semiconductor electrodes is discussed here in connection with the basic principles of the (Schottky) barrier theory. Recent models for charge transfer kinetics in normal and unipolar (dye-sensitized) cells are reviewed, and novel concepts and materials are considered.","PeriodicalId":16507,"journal":{"name":"Journal of Nanoparticles","volume":"53 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Charge Transfer in Nanocrystalline Semiconductor Electrodes\",\"authors\":\"M. Bouroushian\",\"doi\":\"10.1155/2013/953153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanocrystalline electrodes in liquid junction devices possess a number of unique properties arising from their convoluted structure and the dimensions of their building units. The light-induced charge separation and transport in photoelectrochemical systems using nanocrystalline/nanoporous semiconductor electrodes is discussed here in connection with the basic principles of the (Schottky) barrier theory. Recent models for charge transfer kinetics in normal and unipolar (dye-sensitized) cells are reviewed, and novel concepts and materials are considered.\",\"PeriodicalId\":16507,\"journal\":{\"name\":\"Journal of Nanoparticles\",\"volume\":\"53 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanoparticles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/953153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/953153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Charge Transfer in Nanocrystalline Semiconductor Electrodes
Nanocrystalline electrodes in liquid junction devices possess a number of unique properties arising from their convoluted structure and the dimensions of their building units. The light-induced charge separation and transport in photoelectrochemical systems using nanocrystalline/nanoporous semiconductor electrodes is discussed here in connection with the basic principles of the (Schottky) barrier theory. Recent models for charge transfer kinetics in normal and unipolar (dye-sensitized) cells are reviewed, and novel concepts and materials are considered.