LRRA: IEEE 802.11p中用于VANET DSRC技术的位置相关速率自适应算法

Jian Xiong, Cailian Chen, X. Guan, Cunqing Hua
{"title":"LRRA: IEEE 802.11p中用于VANET DSRC技术的位置相关速率自适应算法","authors":"Jian Xiong, Cailian Chen, X. Guan, Cunqing Hua","doi":"10.1109/VTCFall.2016.7881079","DOIUrl":null,"url":null,"abstract":"Traffic management, road sensing and multimedia delivery in vehicular ad-hoc network (VANET) are application domains whose performance depend on network throughput. Rate adaptation is the key method to maximize the throughput by estimating the current channel qualities and deciding the best bitrate for the next frames. In VANET, rate adaptation is more challenging due to the rapid variation of channel qualities caused by the high speed and density of vehicles. Fortunately, vehicles are subject to certain recurring patterns particularly when vehicles communicate with the road side units (RSU). In this paper, we design and implement a location-related rate adaptation algorithm (LRRA) which combines the historical information stored in database and current channel conditions to jointly maximize the throughput. We evaluate LRRA with outdoor experiments and ns-3 simulations. The results show that LRRA is superior to most current rate adaptation algorithms.","PeriodicalId":6484,"journal":{"name":"2016 IEEE 84th Vehicular Technology Conference (VTC-Fall)","volume":"78 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"LRRA: Location-Related Rate Adaptation Algorithm in IEEE 802.11p for DSRC Technology in VANET\",\"authors\":\"Jian Xiong, Cailian Chen, X. Guan, Cunqing Hua\",\"doi\":\"10.1109/VTCFall.2016.7881079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traffic management, road sensing and multimedia delivery in vehicular ad-hoc network (VANET) are application domains whose performance depend on network throughput. Rate adaptation is the key method to maximize the throughput by estimating the current channel qualities and deciding the best bitrate for the next frames. In VANET, rate adaptation is more challenging due to the rapid variation of channel qualities caused by the high speed and density of vehicles. Fortunately, vehicles are subject to certain recurring patterns particularly when vehicles communicate with the road side units (RSU). In this paper, we design and implement a location-related rate adaptation algorithm (LRRA) which combines the historical information stored in database and current channel conditions to jointly maximize the throughput. We evaluate LRRA with outdoor experiments and ns-3 simulations. The results show that LRRA is superior to most current rate adaptation algorithms.\",\"PeriodicalId\":6484,\"journal\":{\"name\":\"2016 IEEE 84th Vehicular Technology Conference (VTC-Fall)\",\"volume\":\"78 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 84th Vehicular Technology Conference (VTC-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTCFall.2016.7881079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 84th Vehicular Technology Conference (VTC-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTCFall.2016.7881079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

车辆自组织网络(VANET)中的交通管理、道路感知和多媒体传输是其性能取决于网络吞吐量的应用领域。速率自适应是通过估计当前信道质量和确定下一帧的最佳比特率来实现吞吐量最大化的关键方法。在VANET中,由于车辆的高速和密度导致信道质量的快速变化,因此速率适应更具挑战性。幸运的是,车辆受到某些重复模式的影响,特别是当车辆与路边单元(RSU)通信时。本文设计并实现了一种位置相关速率自适应算法(LRRA),该算法将数据库中存储的历史信息与当前信道条件相结合,共同实现吞吐量最大化。我们通过室外实验和ns-3模拟对LRRA进行了评估。结果表明,LRRA算法优于目前大多数速率自适应算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LRRA: Location-Related Rate Adaptation Algorithm in IEEE 802.11p for DSRC Technology in VANET
Traffic management, road sensing and multimedia delivery in vehicular ad-hoc network (VANET) are application domains whose performance depend on network throughput. Rate adaptation is the key method to maximize the throughput by estimating the current channel qualities and deciding the best bitrate for the next frames. In VANET, rate adaptation is more challenging due to the rapid variation of channel qualities caused by the high speed and density of vehicles. Fortunately, vehicles are subject to certain recurring patterns particularly when vehicles communicate with the road side units (RSU). In this paper, we design and implement a location-related rate adaptation algorithm (LRRA) which combines the historical information stored in database and current channel conditions to jointly maximize the throughput. We evaluate LRRA with outdoor experiments and ns-3 simulations. The results show that LRRA is superior to most current rate adaptation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blind Signal Recognition Method of STBC Based on Multi-channel Convolutional Neural Network Welcome from the VTS President Beam Switching Solutions for Beam-Hopping Based LEO System Modeling Interference to Reuse Millimeter-wave Spectrum to In-Building Small Cells Toward 6G Interweave Shared-Use Model for Dynamic Spectrum Access in Millimeter-Wave Mobile Systems for 6G
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1