使用维基百科分类发现文本文档的主题

Abdullah Bawakid
{"title":"使用维基百科分类发现文本文档的主题","authors":"Abdullah Bawakid","doi":"10.1109/IHMSC.2015.68","DOIUrl":null,"url":null,"abstract":"This paper describes a new unsupervised approach for identifying the main themes of any text document with the aid of Wikipedia. In contrast to others, the proposed algorithm relies on merely two main aspects of Wikipedia, namely its articles titles and categories structure. The inner content of the articles of Wikipedia are not employed in our algorithm. We describe in this paper how to build a Term-Categories vector that defines how strong a term is associated to a Wikipedia concept. We also explain how this vector is employed when processing a text document to discover its main themes. We report the performance of our method by attempting to predict the most representative categories for a subset of Wikipedia articles.","PeriodicalId":6592,"journal":{"name":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"96 1","pages":"452-455"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using Wikipedia Categories for Discovering the Themes of Text Documents\",\"authors\":\"Abdullah Bawakid\",\"doi\":\"10.1109/IHMSC.2015.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a new unsupervised approach for identifying the main themes of any text document with the aid of Wikipedia. In contrast to others, the proposed algorithm relies on merely two main aspects of Wikipedia, namely its articles titles and categories structure. The inner content of the articles of Wikipedia are not employed in our algorithm. We describe in this paper how to build a Term-Categories vector that defines how strong a term is associated to a Wikipedia concept. We also explain how this vector is employed when processing a text document to discover its main themes. We report the performance of our method by attempting to predict the most representative categories for a subset of Wikipedia articles.\",\"PeriodicalId\":6592,\"journal\":{\"name\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"96 1\",\"pages\":\"452-455\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2015.68\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2015.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文描述了一种新的无监督方法,用于在维基百科的帮助下识别任何文本文档的主题。与其他算法相比,该算法仅依赖于维基百科的两个主要方面,即文章标题和分类结构。我们的算法没有使用维基百科文章的内部内容。我们在本文中描述了如何构建一个术语-类别向量,该向量定义了术语与维基百科概念的关联程度。我们还解释了在处理文本文档以发现其主题时如何使用此向量。我们通过尝试预测维基百科文章子集中最具代表性的类别来报告我们方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Wikipedia Categories for Discovering the Themes of Text Documents
This paper describes a new unsupervised approach for identifying the main themes of any text document with the aid of Wikipedia. In contrast to others, the proposed algorithm relies on merely two main aspects of Wikipedia, namely its articles titles and categories structure. The inner content of the articles of Wikipedia are not employed in our algorithm. We describe in this paper how to build a Term-Categories vector that defines how strong a term is associated to a Wikipedia concept. We also explain how this vector is employed when processing a text document to discover its main themes. We report the performance of our method by attempting to predict the most representative categories for a subset of Wikipedia articles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Algorithm for Mining Maximal Frequent Patterns over Data Streams Analysis of Structural Parameters of Metal Multi-convolution Ring Effects of the Plasma Frequency and the Collision Frequency on the Performance of a Smart Plasma Antenna An Efficient Data Transmission Strategy for Cyber-Physical Systems in the Complicated Environment A Multi-objective Optimization Decision Model Assisting the Land-Use Spatial Districting under Hard Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1