量子密钥分配系统中和解方法的实验研究与实践实现

N. Benletaief, H. Rezig, A. Bouallègue
{"title":"量子密钥分配系统中和解方法的实验研究与实践实现","authors":"N. Benletaief, H. Rezig, A. Bouallègue","doi":"10.1109/IACS.2016.7476111","DOIUrl":null,"url":null,"abstract":"This paper investigates a reconciliation method in order to establish an errorless secret key in a QKD protocol. Classical key distribution protocols are no longer unconditionally secure because computational complexity of mathematical problems forced hardships. In this context, QKD protocols offer a highest level of security because they are based on the quantum laws of physics. But, the protocol performances can be lowered by multiples errors. It appears clearly that reconciliation should be performed in such a situation in order to remove the errors as for the legitimate partners. The proposed method accomplishes reconciliation by using QTC in the special problem of side-information source coding (\"Slepian-Wolf\" coding model). Our theoretical hypothesis are sustained by experimental results that confirm the advantage of our method in resolving reconciliation problem compared to a recent related work. Indeed, the integration of our method generates an important progess in security and a large decrease of the QBER. The gain is obtained with a reasonable complexity increase. Also, the novelty of our work is that it tested the reconciliation method on a real photonic system under VPItransmissionMaker.","PeriodicalId":6579,"journal":{"name":"2016 7th International Conference on Information and Communication Systems (ICICS)","volume":"1 1","pages":"201-206"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study and praticai realization of a reconciliation method for quantum key distribution system\",\"authors\":\"N. Benletaief, H. Rezig, A. Bouallègue\",\"doi\":\"10.1109/IACS.2016.7476111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates a reconciliation method in order to establish an errorless secret key in a QKD protocol. Classical key distribution protocols are no longer unconditionally secure because computational complexity of mathematical problems forced hardships. In this context, QKD protocols offer a highest level of security because they are based on the quantum laws of physics. But, the protocol performances can be lowered by multiples errors. It appears clearly that reconciliation should be performed in such a situation in order to remove the errors as for the legitimate partners. The proposed method accomplishes reconciliation by using QTC in the special problem of side-information source coding (\\\"Slepian-Wolf\\\" coding model). Our theoretical hypothesis are sustained by experimental results that confirm the advantage of our method in resolving reconciliation problem compared to a recent related work. Indeed, the integration of our method generates an important progess in security and a large decrease of the QBER. The gain is obtained with a reasonable complexity increase. Also, the novelty of our work is that it tested the reconciliation method on a real photonic system under VPItransmissionMaker.\",\"PeriodicalId\":6579,\"journal\":{\"name\":\"2016 7th International Conference on Information and Communication Systems (ICICS)\",\"volume\":\"1 1\",\"pages\":\"201-206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Information and Communication Systems (ICICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IACS.2016.7476111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Information and Communication Systems (ICICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IACS.2016.7476111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种在QKD协议中建立无差错密钥的协调方法。经典的密钥分配协议不再是无条件安全的,因为数学问题的计算复杂性迫使困难。在这种情况下,QKD协议提供了最高级别的安全性,因为它们基于物理的量子定律。但是,多个错误会降低协议的性能。显然,应该在这种情况下进行和解,以便消除对合法伙伴的错误。该方法利用QTC对侧信息源编码的特殊问题(“睡狼”编码模型)进行协调。我们的理论假设得到了实验结果的支持,与最近的相关工作相比,我们的方法在解决调和问题方面具有优势。实际上,我们的方法的集成在安全性方面取得了重要进展,并且大大降低了QBER。在合理的复杂度增加的情况下获得增益。此外,我们工作的新颖之处在于,它在VPItransmissionMaker下的实际光子系统上测试了调和方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study and praticai realization of a reconciliation method for quantum key distribution system
This paper investigates a reconciliation method in order to establish an errorless secret key in a QKD protocol. Classical key distribution protocols are no longer unconditionally secure because computational complexity of mathematical problems forced hardships. In this context, QKD protocols offer a highest level of security because they are based on the quantum laws of physics. But, the protocol performances can be lowered by multiples errors. It appears clearly that reconciliation should be performed in such a situation in order to remove the errors as for the legitimate partners. The proposed method accomplishes reconciliation by using QTC in the special problem of side-information source coding ("Slepian-Wolf" coding model). Our theoretical hypothesis are sustained by experimental results that confirm the advantage of our method in resolving reconciliation problem compared to a recent related work. Indeed, the integration of our method generates an important progess in security and a large decrease of the QBER. The gain is obtained with a reasonable complexity increase. Also, the novelty of our work is that it tested the reconciliation method on a real photonic system under VPItransmissionMaker.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental study and praticai realization of a reconciliation method for quantum key distribution system DAS: Distributed analytics system for Arabic search engines Parallel coordinates metrics for classification visualization Importance of service integration in e-government implementations Implementation of parallel model checking for computer-based test security design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1