从动力系统组成计算反馈计划

Alfredo Bayuelo, Tauhidul Alam, Leonardo Bobadilla, Fernando Niño, Ryan N. Smith
{"title":"从动力系统组成计算反馈计划","authors":"Alfredo Bayuelo, Tauhidul Alam, Leonardo Bobadilla, Fernando Niño, Ryan N. Smith","doi":"10.1109/COASE.2019.8843096","DOIUrl":null,"url":null,"abstract":"Computing plans for systems with differential constraints is a fundamental component in numerous robotic applications. Most previous approaches are based on creating motion plans between an initial and a goal location. However, a more robust approach is to compute feedback plans over the entire configuration space to account for uncertainty in the robot’s motions. In this paper, we therefore propose a new method that constructs a feedback plan by incrementally composing the long-term behavior of the robot’s motions for a set of actions. Our method takes advantage of dynamical system analysis techniques and efficient combinatorial algorithms. We implement our method in simulations considering a robot under a simple bouncing behavior. A feedback plan for the robot to reach the goal region starting from any location of an environment is successfully constructed using the implementation of our method. Our method is also applicable to non-linear systems with uncertainty.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"10 1","pages":"1175-1180"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Computing Feedback Plans from Dynamical System Composition\",\"authors\":\"Alfredo Bayuelo, Tauhidul Alam, Leonardo Bobadilla, Fernando Niño, Ryan N. Smith\",\"doi\":\"10.1109/COASE.2019.8843096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computing plans for systems with differential constraints is a fundamental component in numerous robotic applications. Most previous approaches are based on creating motion plans between an initial and a goal location. However, a more robust approach is to compute feedback plans over the entire configuration space to account for uncertainty in the robot’s motions. In this paper, we therefore propose a new method that constructs a feedback plan by incrementally composing the long-term behavior of the robot’s motions for a set of actions. Our method takes advantage of dynamical system analysis techniques and efficient combinatorial algorithms. We implement our method in simulations considering a robot under a simple bouncing behavior. A feedback plan for the robot to reach the goal region starting from any location of an environment is successfully constructed using the implementation of our method. Our method is also applicable to non-linear systems with uncertainty.\",\"PeriodicalId\":6695,\"journal\":{\"name\":\"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"10 1\",\"pages\":\"1175-1180\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2019.8843096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8843096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

微分约束系统的计算方案是众多机器人应用的基本组成部分。大多数先前的方法都是基于在初始位置和目标位置之间创建运动计划。然而,一种更稳健的方法是计算整个构型空间的反馈计划,以考虑机器人运动中的不确定性。因此,在本文中,我们提出了一种新的方法,通过增量组合机器人运动的一组动作的长期行为来构建反馈计划。我们的方法利用了动力系统分析技术和有效的组合算法。我们在模拟中考虑了一个具有简单弹跳行为的机器人来实现我们的方法。利用该方法的实现,成功地构建了机器人从环境的任意位置出发到达目标区域的反馈计划。该方法同样适用于具有不确定性的非线性系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computing Feedback Plans from Dynamical System Composition
Computing plans for systems with differential constraints is a fundamental component in numerous robotic applications. Most previous approaches are based on creating motion plans between an initial and a goal location. However, a more robust approach is to compute feedback plans over the entire configuration space to account for uncertainty in the robot’s motions. In this paper, we therefore propose a new method that constructs a feedback plan by incrementally composing the long-term behavior of the robot’s motions for a set of actions. Our method takes advantage of dynamical system analysis techniques and efficient combinatorial algorithms. We implement our method in simulations considering a robot under a simple bouncing behavior. A feedback plan for the robot to reach the goal region starting from any location of an environment is successfully constructed using the implementation of our method. Our method is also applicable to non-linear systems with uncertainty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A proposed mapping method for aligning machine execution data to numerical control code optimizing outpatient Department Staffing Level using Multi-Fidelity Models Advanced Sensor and Target Development to Support Robot Accuracy Degradation Assessment Multi-Task Hierarchical Imitation Learning for Home Automation Deep Reinforcement Learning of Robotic Precision Insertion Skill Accelerated by Demonstrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1