实时钻井中的自动滑移状态和支架检测

Jie Zhao, Sylvain Chambon, Yuelin Shen, Sai Venkatakrishnan, M. Hamzah
{"title":"实时钻井中的自动滑移状态和支架检测","authors":"Jie Zhao, Sylvain Chambon, Yuelin Shen, Sai Venkatakrishnan, M. Hamzah","doi":"10.4043/29372-MS","DOIUrl":null,"url":null,"abstract":"\n The drilling process can be broken down into various activities from top-level activities (e.g., drilling and tripping) to lower-level activities (e.g., in-slip, out-of-slip, making connection, and circulation). The detection of the fundamental drilling unit, a stand, is necessary and essential for recognizing and inferring drilling activities. A new method is proposed to detect slip status, pipe change, and drilling/tripping stands based on real-time streaming data.\n The slip status is a critical element because it indicates a connection is made before drilling or tripping a stand. The proposed method is designed to infer the slip status with hookload, standpipe pressure (SPPA), and surface torque (STOR) sensor data. Specifically, the logic using hookload includes two criteria, a hookload standard deviation criterion and a dynamic hookload threshold criterion. This allows addressing the limitations of prior methods at shallow depth and using a manual threshold, which prevents the full automation of slip detection. In addition, the slip status can be confirmed or corrected with a logic using a combination of SPPA and STOR data. Then, a check is performed on whether a stand is added or removed during in-slip period. If needed, the stand detection can also be run to detect where a stand begins and ends.\n The method has been extensively tested and validated on many land and deepwater wells with drilling/tripping operations. Without human intervention, the dynamic hookload threshold can be determined automatically and adaptively after one or two drilling or tripping stands. Moreover, the hookload standard deviation criterion works well to detect the change of slip status at shallow depth. It is shown that high accuracy of detection can be achieved when the streaming data have a proper range of sampling rate.\n The new method addresses two limitations of the existing methods: (1) it automatically determines the dynamic hookload thresholds and eliminates the need of setting up the hookload threshold manually, and (2) it improves the accuracy of slip status and stand detection at shallow depth. This innovative work enables the automation of the slip status and stand detection process in batch runs or in real time without operator input.","PeriodicalId":11149,"journal":{"name":"Day 1 Mon, May 06, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Slip Status and Stand Detection in Real-Time Drilling\",\"authors\":\"Jie Zhao, Sylvain Chambon, Yuelin Shen, Sai Venkatakrishnan, M. Hamzah\",\"doi\":\"10.4043/29372-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The drilling process can be broken down into various activities from top-level activities (e.g., drilling and tripping) to lower-level activities (e.g., in-slip, out-of-slip, making connection, and circulation). The detection of the fundamental drilling unit, a stand, is necessary and essential for recognizing and inferring drilling activities. A new method is proposed to detect slip status, pipe change, and drilling/tripping stands based on real-time streaming data.\\n The slip status is a critical element because it indicates a connection is made before drilling or tripping a stand. The proposed method is designed to infer the slip status with hookload, standpipe pressure (SPPA), and surface torque (STOR) sensor data. Specifically, the logic using hookload includes two criteria, a hookload standard deviation criterion and a dynamic hookload threshold criterion. This allows addressing the limitations of prior methods at shallow depth and using a manual threshold, which prevents the full automation of slip detection. In addition, the slip status can be confirmed or corrected with a logic using a combination of SPPA and STOR data. Then, a check is performed on whether a stand is added or removed during in-slip period. If needed, the stand detection can also be run to detect where a stand begins and ends.\\n The method has been extensively tested and validated on many land and deepwater wells with drilling/tripping operations. Without human intervention, the dynamic hookload threshold can be determined automatically and adaptively after one or two drilling or tripping stands. Moreover, the hookload standard deviation criterion works well to detect the change of slip status at shallow depth. It is shown that high accuracy of detection can be achieved when the streaming data have a proper range of sampling rate.\\n The new method addresses two limitations of the existing methods: (1) it automatically determines the dynamic hookload thresholds and eliminates the need of setting up the hookload threshold manually, and (2) it improves the accuracy of slip status and stand detection at shallow depth. This innovative work enables the automation of the slip status and stand detection process in batch runs or in real time without operator input.\",\"PeriodicalId\":11149,\"journal\":{\"name\":\"Day 1 Mon, May 06, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, May 06, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29372-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, May 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29372-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

钻井过程可以分解为各种活动,从顶级活动(例如,钻井和起下钻)到低级活动(例如,卡瓦内、卡瓦外、连接和循环)。基础钻井单元的检测是识别和推断钻井活动的必要条件。提出了一种基于实时流数据检测滑动状态、换管和钻/起下钻位置的新方法。卡瓦状态是一个关键因素,因为它表明在钻井或起下钻之前已经完成了连接。该方法通过钩载荷、立管压力(SPPA)和地面扭矩(STOR)传感器数据推断滑脱状态。具体来说,使用钩子负载的逻辑包括两个准则,钩子负载标准差准则和动态钩子负载阈值准则。这可以解决先前方法在浅深度和使用手动阈值的局限性,从而阻止滑动检测的完全自动化。此外,可以使用SPPA和STOR数据组合的逻辑来确认或纠正滑移状态。然后,检查是否在滑移期间增加或移除支架。如果需要,还可以运行站检测来检测站的开始和结束位置。该方法已经在许多陆地和深水井的钻井/起下钻作业中进行了广泛的测试和验证。在没有人为干预的情况下,在一次或两次钻井或起下钻后,动态钩载荷阈值可以自动自适应地确定。此外,钩载标准偏差准则能较好地检测浅层滑移状态的变化。结果表明,当流数据具有适当的采样率范围时,可以达到较高的检测精度。新方法解决了现有方法的两个局限性:(1)自动确定动态钩载阈值,消除了手动设置钩载阈值的需要;(2)提高了浅深度滑动状态和机架检测的精度。这项创新的工作可以在批量运行或无需操作员输入的情况下实现滑动状态和支架检测过程的自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Slip Status and Stand Detection in Real-Time Drilling
The drilling process can be broken down into various activities from top-level activities (e.g., drilling and tripping) to lower-level activities (e.g., in-slip, out-of-slip, making connection, and circulation). The detection of the fundamental drilling unit, a stand, is necessary and essential for recognizing and inferring drilling activities. A new method is proposed to detect slip status, pipe change, and drilling/tripping stands based on real-time streaming data. The slip status is a critical element because it indicates a connection is made before drilling or tripping a stand. The proposed method is designed to infer the slip status with hookload, standpipe pressure (SPPA), and surface torque (STOR) sensor data. Specifically, the logic using hookload includes two criteria, a hookload standard deviation criterion and a dynamic hookload threshold criterion. This allows addressing the limitations of prior methods at shallow depth and using a manual threshold, which prevents the full automation of slip detection. In addition, the slip status can be confirmed or corrected with a logic using a combination of SPPA and STOR data. Then, a check is performed on whether a stand is added or removed during in-slip period. If needed, the stand detection can also be run to detect where a stand begins and ends. The method has been extensively tested and validated on many land and deepwater wells with drilling/tripping operations. Without human intervention, the dynamic hookload threshold can be determined automatically and adaptively after one or two drilling or tripping stands. Moreover, the hookload standard deviation criterion works well to detect the change of slip status at shallow depth. It is shown that high accuracy of detection can be achieved when the streaming data have a proper range of sampling rate. The new method addresses two limitations of the existing methods: (1) it automatically determines the dynamic hookload thresholds and eliminates the need of setting up the hookload threshold manually, and (2) it improves the accuracy of slip status and stand detection at shallow depth. This innovative work enables the automation of the slip status and stand detection process in batch runs or in real time without operator input.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Detailed Look into the 2017 SNAME OC-8 Comparative Wind Load Study A Family of Practical Foundation Models for Dynamic Analyses of Offshore Wind Turbines Turret-Moored FPSO Yaw Motions in a Squall-Prone Region Ultra-Long Subsea Gas Condensate Tie Back – Pseudo Dry Gas – Liquid Handling System Deepwater Opportunities Extra Long Oil Tiebacks Developments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1