在酮介导的氧化酯化过程中用于保护酚功能的基团的相容性

T. Mineno, Yukizi Suzuki, Tomoya Nobuta, Daiki Takano, Hisao Kansui
{"title":"在酮介导的氧化酯化过程中用于保护酚功能的基团的相容性","authors":"T. Mineno, Yukizi Suzuki, Tomoya Nobuta, Daiki Takano, Hisao Kansui","doi":"10.4236/gsc.2022.124007","DOIUrl":null,"url":null,"abstract":"Protecting groups often play an essential role in organic synthesis, particularly for multi-step synthesis or natural product total synthesis. Various protecting groups areavailable to mask the vulnerable functionality; phenolic hydroxy groups are noteworthy examples, but their stability differs when protected. Herein, the compatibility of protective phenolic functionality was investigated with the implementation of indium (III) triflate-catalyzed oxidative esterification using Oxone in methanol. A wide range of protective moieties was selected and subjected to Oxone-mediated oxidative esterification. For example, sulfonates were found to be sufficiently stable and inert whereas acetals were susceptible to reaction conditions. The details of this investigation are pro-vided.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Compatibility of Groups Used to Protect Phenolic Functionality during Oxone-Mediated Oxidative Esterification\",\"authors\":\"T. Mineno, Yukizi Suzuki, Tomoya Nobuta, Daiki Takano, Hisao Kansui\",\"doi\":\"10.4236/gsc.2022.124007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protecting groups often play an essential role in organic synthesis, particularly for multi-step synthesis or natural product total synthesis. Various protecting groups areavailable to mask the vulnerable functionality; phenolic hydroxy groups are noteworthy examples, but their stability differs when protected. Herein, the compatibility of protective phenolic functionality was investigated with the implementation of indium (III) triflate-catalyzed oxidative esterification using Oxone in methanol. A wide range of protective moieties was selected and subjected to Oxone-mediated oxidative esterification. For example, sulfonates were found to be sufficiently stable and inert whereas acetals were susceptible to reaction conditions. The details of this investigation are pro-vided.\",\"PeriodicalId\":12770,\"journal\":{\"name\":\"Green and Sustainable Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green and Sustainable Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/gsc.2022.124007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/gsc.2022.124007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

保护基团在有机合成中起着重要的作用,特别是在多步合成或天然产物全合成中。各种保护组可用于掩盖易受攻击的功能;酚羟基是值得注意的例子,但它们的稳定性在保护时不同。本文研究了保护酚醛官能团与三氟化铟催化氧化酯化反应的相容性。广泛的保护基团被选择并受到氧酮介导的氧化酯化反应。例如,磺酸盐被发现是足够稳定和惰性的,而缩醛则易受反应条件的影响。提供了这项调查的细节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Compatibility of Groups Used to Protect Phenolic Functionality during Oxone-Mediated Oxidative Esterification
Protecting groups often play an essential role in organic synthesis, particularly for multi-step synthesis or natural product total synthesis. Various protecting groups areavailable to mask the vulnerable functionality; phenolic hydroxy groups are noteworthy examples, but their stability differs when protected. Herein, the compatibility of protective phenolic functionality was investigated with the implementation of indium (III) triflate-catalyzed oxidative esterification using Oxone in methanol. A wide range of protective moieties was selected and subjected to Oxone-mediated oxidative esterification. For example, sulfonates were found to be sufficiently stable and inert whereas acetals were susceptible to reaction conditions. The details of this investigation are pro-vided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a Certified Reference Material from Caffeine Solution for Assuring the Quality of Food and Drug Measurements Environmentally Friendly Room Temperature Synthesis of 1-Tetralone over Layered Double Hydroxide-Hosted Sulphonato-Salen-Nickel(II) Complex Production of Biogas from Olive Mill Waste Waters Treated by Cow Manure Wastewater Treatment Trial by Double Filtration on Granular Activated Carbon (GAC) Prepared from Peanut Shells Electrochemically and Ultrasonically-Enhanced Coagulation for Algae Removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1