M. Khan, Abinash Barooh, Muhammad Yousuf Khan, Mohammad Sohel Rahman, Ibrahim Hassan, Rashid Hassan
{"title":"大位移井非牛顿多相切削运移研究","authors":"M. Khan, Abinash Barooh, Muhammad Yousuf Khan, Mohammad Sohel Rahman, Ibrahim Hassan, Rashid Hassan","doi":"10.2118/200240-ms","DOIUrl":null,"url":null,"abstract":"\n In horizontal drilling, inefficient hole cleaning causes multiple operational issues and increased pressure loss. In-situ measurement of the cutting transport is essential to understand the hydrodynamics and operational parameters required for the effective hole cleaning. The electrical resistance tomography (ERT) is becoming a promising tool in many industrial applications. The purpose of this study was to provide detailed information about the application of non-invasive ERT system to analyze the volume fraction of solids in the presence of non-Newtonian fluid (0.5 wt% Flowzan) in a drilling annulus. The experiments were conducted in a horizontal flow loop system where the annulus section was 240 (6.16 m) inch long contains the inner and outer diameters of 2.5 inch (6.4 cm) and 4.5inches (11.4 cm), respectively. The obtained results suggested that the ERT system could effectively detect the volume fraction of the solids in the presence of non-Newtonian fluid (Flowzan) at different drilling conditions. Results also revealed that with an increase in fluid velocity, the efficient hole cleaning was observed. Moreover, the drill pipe rotation also positively influenced the cutting transport. Therefore, this study will provide the avenue for the industrial application of in situ ERT measurement technique in the multiphase systems, especially in the presence of the non-Newtonian drilling fluids.","PeriodicalId":10912,"journal":{"name":"Day 3 Wed, March 23, 2022","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Non-Newtonian Multiphase Cutting Transport in an Extended Reach Well\",\"authors\":\"M. Khan, Abinash Barooh, Muhammad Yousuf Khan, Mohammad Sohel Rahman, Ibrahim Hassan, Rashid Hassan\",\"doi\":\"10.2118/200240-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In horizontal drilling, inefficient hole cleaning causes multiple operational issues and increased pressure loss. In-situ measurement of the cutting transport is essential to understand the hydrodynamics and operational parameters required for the effective hole cleaning. The electrical resistance tomography (ERT) is becoming a promising tool in many industrial applications. The purpose of this study was to provide detailed information about the application of non-invasive ERT system to analyze the volume fraction of solids in the presence of non-Newtonian fluid (0.5 wt% Flowzan) in a drilling annulus. The experiments were conducted in a horizontal flow loop system where the annulus section was 240 (6.16 m) inch long contains the inner and outer diameters of 2.5 inch (6.4 cm) and 4.5inches (11.4 cm), respectively. The obtained results suggested that the ERT system could effectively detect the volume fraction of the solids in the presence of non-Newtonian fluid (Flowzan) at different drilling conditions. Results also revealed that with an increase in fluid velocity, the efficient hole cleaning was observed. Moreover, the drill pipe rotation also positively influenced the cutting transport. Therefore, this study will provide the avenue for the industrial application of in situ ERT measurement technique in the multiphase systems, especially in the presence of the non-Newtonian drilling fluids.\",\"PeriodicalId\":10912,\"journal\":{\"name\":\"Day 3 Wed, March 23, 2022\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, March 23, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/200240-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, March 23, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/200240-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating Non-Newtonian Multiphase Cutting Transport in an Extended Reach Well
In horizontal drilling, inefficient hole cleaning causes multiple operational issues and increased pressure loss. In-situ measurement of the cutting transport is essential to understand the hydrodynamics and operational parameters required for the effective hole cleaning. The electrical resistance tomography (ERT) is becoming a promising tool in many industrial applications. The purpose of this study was to provide detailed information about the application of non-invasive ERT system to analyze the volume fraction of solids in the presence of non-Newtonian fluid (0.5 wt% Flowzan) in a drilling annulus. The experiments were conducted in a horizontal flow loop system where the annulus section was 240 (6.16 m) inch long contains the inner and outer diameters of 2.5 inch (6.4 cm) and 4.5inches (11.4 cm), respectively. The obtained results suggested that the ERT system could effectively detect the volume fraction of the solids in the presence of non-Newtonian fluid (Flowzan) at different drilling conditions. Results also revealed that with an increase in fluid velocity, the efficient hole cleaning was observed. Moreover, the drill pipe rotation also positively influenced the cutting transport. Therefore, this study will provide the avenue for the industrial application of in situ ERT measurement technique in the multiphase systems, especially in the presence of the non-Newtonian drilling fluids.