乳清对白斑综合征病毒的保护作用

{"title":"乳清对白斑综合征病毒的保护作用","authors":"","doi":"10.33263/proceedings21.061062","DOIUrl":null,"url":null,"abstract":"White spot syndrome virus (WSSV) belongs to a new virus family, Nimaviridae, genus Whispovirus and contains a large circular double-stranded DNA genome of 292,967 bp. WSSV virions are ellipsoid to bacilliform, enveloped particles with a distinctive tail-like appendage at one end. They can be found throughout the body of infected shrimp. The virions contain one nucleocapsid with a typical striated appearance and 5 major and at least 13 minor proteins. WSSV, which was first discovered in Southeast Asia around 1992, is currently the most serious viral pathogen of shrimp worldwide. It causes up to 100% mortality within 7 to 10 days in commercial shrimp farms, resulting in large economic losses amounting to billions of US dollars across different countries to the shrimp farming industry. In a natural situation, shrimp become infected through both oral and water-borne routes, and the gills are thought to be a major point of viral entry. Considering the global economic and sociological importance of shrimp farming and its continued high growth, the development of novel control measures becomes necessary against the outbreak of WSSV. A number of strategies have been used to control WSSV, each with some limitations. Conventional control strategies such as improvement of environmental conditions, stocking of pathogen-free post-larvae, and augmentation of disease resistance by oral immune-stimulants or probiotics are currently employed to control WSSV infection. Use of recombinant viral proteins as vaccines that induce a specific immune response and protection has been demonstrated to control WSSV. Other studies have shown successful vaccination of shrimp with DNA vaccines that have prolonged effects. The RNA interference (RNAi) mediated silencing of targeted viral mRNAs holds tremendous potential for controlling shrimp diseases. The silencing of viruses using RNAi has been experimentally demonstrated for WSSV in shrimp by injecting or feeding synthetic siRNA, long double-stranded RNA (dsRNA), and short/long-hairpin RNA (shRNA/lhRNA) prepared by in vitro transcription or expressed in bacteria. In addition to targeting viral proteins, protection of WSSV has also been achieved by dsRNA targeted against shrimp PmRab7, a protein important for viral entry into the host cells. Antisense constructs offered strong protection in WSSV challenged shrimp, P. monodon, with a corresponding decrease in viral load. Antisense constructs expressing VP24 and VP28 offered the best protection with a consistent reduction in WSSV copy number in both cell culture and in experimental shrimp. The advantage of using antisense constructs is their lack of toxicity and immunogenicity and their high specificity towards the desired target. The usage of edible pellet feed coated with dsRNA against WSSV has shown promising results. Overall, the present investigation clearly demonstrates that it is possible to induce strong protection in shrimp against WSSV infection using host promoter-driven antisense constructs in controlled laboratory-scale experiments. However, it is important to develop a simple and efficient delivery system for extending this study to the field level.","PeriodicalId":90703,"journal":{"name":"Proceedings. International Meshing Roundtable","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protection of Caridea Against White Spot Syndrome Virus\",\"authors\":\"\",\"doi\":\"10.33263/proceedings21.061062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"White spot syndrome virus (WSSV) belongs to a new virus family, Nimaviridae, genus Whispovirus and contains a large circular double-stranded DNA genome of 292,967 bp. WSSV virions are ellipsoid to bacilliform, enveloped particles with a distinctive tail-like appendage at one end. They can be found throughout the body of infected shrimp. The virions contain one nucleocapsid with a typical striated appearance and 5 major and at least 13 minor proteins. WSSV, which was first discovered in Southeast Asia around 1992, is currently the most serious viral pathogen of shrimp worldwide. It causes up to 100% mortality within 7 to 10 days in commercial shrimp farms, resulting in large economic losses amounting to billions of US dollars across different countries to the shrimp farming industry. In a natural situation, shrimp become infected through both oral and water-borne routes, and the gills are thought to be a major point of viral entry. Considering the global economic and sociological importance of shrimp farming and its continued high growth, the development of novel control measures becomes necessary against the outbreak of WSSV. A number of strategies have been used to control WSSV, each with some limitations. Conventional control strategies such as improvement of environmental conditions, stocking of pathogen-free post-larvae, and augmentation of disease resistance by oral immune-stimulants or probiotics are currently employed to control WSSV infection. Use of recombinant viral proteins as vaccines that induce a specific immune response and protection has been demonstrated to control WSSV. Other studies have shown successful vaccination of shrimp with DNA vaccines that have prolonged effects. The RNA interference (RNAi) mediated silencing of targeted viral mRNAs holds tremendous potential for controlling shrimp diseases. The silencing of viruses using RNAi has been experimentally demonstrated for WSSV in shrimp by injecting or feeding synthetic siRNA, long double-stranded RNA (dsRNA), and short/long-hairpin RNA (shRNA/lhRNA) prepared by in vitro transcription or expressed in bacteria. In addition to targeting viral proteins, protection of WSSV has also been achieved by dsRNA targeted against shrimp PmRab7, a protein important for viral entry into the host cells. Antisense constructs offered strong protection in WSSV challenged shrimp, P. monodon, with a corresponding decrease in viral load. Antisense constructs expressing VP24 and VP28 offered the best protection with a consistent reduction in WSSV copy number in both cell culture and in experimental shrimp. The advantage of using antisense constructs is their lack of toxicity and immunogenicity and their high specificity towards the desired target. The usage of edible pellet feed coated with dsRNA against WSSV has shown promising results. Overall, the present investigation clearly demonstrates that it is possible to induce strong protection in shrimp against WSSV infection using host promoter-driven antisense constructs in controlled laboratory-scale experiments. However, it is important to develop a simple and efficient delivery system for extending this study to the field level.\",\"PeriodicalId\":90703,\"journal\":{\"name\":\"Proceedings. International Meshing Roundtable\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Meshing Roundtable\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/proceedings21.061062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Meshing Roundtable","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/proceedings21.061062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

白斑综合征病毒(WSSV)是一种新型病毒科,尼米病毒科,Whispovirus属,含有一个长292,967 bp的环状双链DNA基因组。WSSV病毒粒子是椭球状到杆菌状的包膜颗粒,一端有一个独特的尾巴状附属物。它们可以在被感染的虾的全身找到。病毒粒子包含一个具有典型条纹外观的核衣壳和5个主要蛋白质和至少13个次要蛋白质。WSSV于1992年左右在东南亚首次发现,是目前世界上对虾最严重的病毒性病原体。在商业对虾养殖场,它在7至10天内导致高达100%的死亡率,给不同国家的对虾养殖业造成数十亿美元的巨大经济损失。在自然情况下,虾通过口腔和水传播途径被感染,而鳃被认为是病毒进入的主要点。考虑到对虾养殖及其持续高增长的全球经济和社会重要性,开发新的控制措施成为对抗WSSV爆发的必要措施。已经使用了许多策略来控制WSSV,每种策略都有一些限制。目前用于控制WSSV感染的常规控制策略包括改善环境条件、放养无病原体的幼虫、口服免疫刺激剂或益生菌增强疾病抵抗力等。利用重组病毒蛋白作为疫苗,诱导特异性免疫反应和保护已被证明可以控制WSSV。其他研究表明,用DNA疫苗成功地给虾接种了具有长期效果的疫苗。RNA干扰(RNAi)介导的靶病毒mrna沉默在控制虾类疾病方面具有巨大的潜力。通过注射或喂食合成siRNA、长双链RNA (dsRNA)和短/长发夹RNA (shRNA/lhRNA)等体外转录或细菌表达的方法,实验证明了RNAi对虾WSSV病毒的沉默作用。除了靶向病毒蛋白外,dsRNA还可以靶向虾类PmRab7(一种病毒进入宿主细胞的重要蛋白),从而实现对WSSV的保护。反义构建体在WSSV侵染对虾(P. monodon)中具有较强的保护作用,病毒载量相应降低。在细胞培养和实验虾中,表达VP24和VP28的反义构建体保护效果最好,WSSV拷贝数一致减少。使用反义结构体的优点是它们缺乏毒性和免疫原性,并且对所需目标具有高特异性。应用包被dsRNA的食用颗粒饲料防治WSSV已显示出良好的效果。总的来说,本研究清楚地表明,在实验室规模的对照实验中,利用宿主启动子驱动的反义构建物可以诱导对虾对WSSV感染的强保护。然而,为了将这项研究扩展到实地水平,重要的是开发一个简单有效的交付系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Protection of Caridea Against White Spot Syndrome Virus
White spot syndrome virus (WSSV) belongs to a new virus family, Nimaviridae, genus Whispovirus and contains a large circular double-stranded DNA genome of 292,967 bp. WSSV virions are ellipsoid to bacilliform, enveloped particles with a distinctive tail-like appendage at one end. They can be found throughout the body of infected shrimp. The virions contain one nucleocapsid with a typical striated appearance and 5 major and at least 13 minor proteins. WSSV, which was first discovered in Southeast Asia around 1992, is currently the most serious viral pathogen of shrimp worldwide. It causes up to 100% mortality within 7 to 10 days in commercial shrimp farms, resulting in large economic losses amounting to billions of US dollars across different countries to the shrimp farming industry. In a natural situation, shrimp become infected through both oral and water-borne routes, and the gills are thought to be a major point of viral entry. Considering the global economic and sociological importance of shrimp farming and its continued high growth, the development of novel control measures becomes necessary against the outbreak of WSSV. A number of strategies have been used to control WSSV, each with some limitations. Conventional control strategies such as improvement of environmental conditions, stocking of pathogen-free post-larvae, and augmentation of disease resistance by oral immune-stimulants or probiotics are currently employed to control WSSV infection. Use of recombinant viral proteins as vaccines that induce a specific immune response and protection has been demonstrated to control WSSV. Other studies have shown successful vaccination of shrimp with DNA vaccines that have prolonged effects. The RNA interference (RNAi) mediated silencing of targeted viral mRNAs holds tremendous potential for controlling shrimp diseases. The silencing of viruses using RNAi has been experimentally demonstrated for WSSV in shrimp by injecting or feeding synthetic siRNA, long double-stranded RNA (dsRNA), and short/long-hairpin RNA (shRNA/lhRNA) prepared by in vitro transcription or expressed in bacteria. In addition to targeting viral proteins, protection of WSSV has also been achieved by dsRNA targeted against shrimp PmRab7, a protein important for viral entry into the host cells. Antisense constructs offered strong protection in WSSV challenged shrimp, P. monodon, with a corresponding decrease in viral load. Antisense constructs expressing VP24 and VP28 offered the best protection with a consistent reduction in WSSV copy number in both cell culture and in experimental shrimp. The advantage of using antisense constructs is their lack of toxicity and immunogenicity and their high specificity towards the desired target. The usage of edible pellet feed coated with dsRNA against WSSV has shown promising results. Overall, the present investigation clearly demonstrates that it is possible to induce strong protection in shrimp against WSSV infection using host promoter-driven antisense constructs in controlled laboratory-scale experiments. However, it is important to develop a simple and efficient delivery system for extending this study to the field level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Controlling Intermolecular H-atom Abstraction with Ultrafast Pump-Push-Probe Spectroscopy New nanotechnologies for Energy saving and Resiliency of the Built Environment COVID-19 Global Healthcare System Failures: The Desperate Need for a Paradigm Shift for Better Medical Materials Piezoelectric on Natural Fiber Reinforced Epoxy Composite for Wireless Energy Harvesting Theoretical Investigation of Thermal Expansion Coefficients of SiC Reinforced Copper Matrix Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1