Yu Wang, Mo Xu, Ling Ren, Xiaorui Zhang, Di Wu, Yong He, Ningyi Xu, Huazhong Yang
{"title":"基于多主体体素的脑网络分析异构加速平台","authors":"Yu Wang, Mo Xu, Ling Ren, Xiaorui Zhang, Di Wu, Yong He, Ningyi Xu, Huazhong Yang","doi":"10.5555/2132325.2132413","DOIUrl":null,"url":null,"abstract":"The research on understanding the human brain has attracted more and more attention. A promising method is to model the brain as a network based on modern imaging technologies and then to apply graph theory algorithms for analysis. In this work, we examine the computing bottleneck of this method, and propose a CPU-GPU heterogeneous platform to accelerate the process. We construct a statistical brain network from a sample of 198 people and get characteristics such as nodal degree and modularity. This is the first study of voxel-based brain networks on large samples. We also illustrate that domain-specific hardware platform can have a significant impact on neuroscience studies.","PeriodicalId":6357,"journal":{"name":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A heterogeneous accelerator platform for multi-subject voxel-based brain network analysis\",\"authors\":\"Yu Wang, Mo Xu, Ling Ren, Xiaorui Zhang, Di Wu, Yong He, Ningyi Xu, Huazhong Yang\",\"doi\":\"10.5555/2132325.2132413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research on understanding the human brain has attracted more and more attention. A promising method is to model the brain as a network based on modern imaging technologies and then to apply graph theory algorithms for analysis. In this work, we examine the computing bottleneck of this method, and propose a CPU-GPU heterogeneous platform to accelerate the process. We construct a statistical brain network from a sample of 198 people and get characteristics such as nodal degree and modularity. This is the first study of voxel-based brain networks on large samples. We also illustrate that domain-specific hardware platform can have a significant impact on neuroscience studies.\",\"PeriodicalId\":6357,\"journal\":{\"name\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5555/2132325.2132413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2132325.2132413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A heterogeneous accelerator platform for multi-subject voxel-based brain network analysis
The research on understanding the human brain has attracted more and more attention. A promising method is to model the brain as a network based on modern imaging technologies and then to apply graph theory algorithms for analysis. In this work, we examine the computing bottleneck of this method, and propose a CPU-GPU heterogeneous platform to accelerate the process. We construct a statistical brain network from a sample of 198 people and get characteristics such as nodal degree and modularity. This is the first study of voxel-based brain networks on large samples. We also illustrate that domain-specific hardware platform can have a significant impact on neuroscience studies.