非凸非光滑优化的近端ADMM

Yu Yang, Q. Jia, Zhanbo Xu, X. Guan, C. Spanos
{"title":"非凸非光滑优化的近端ADMM","authors":"Yu Yang, Q. Jia, Zhanbo Xu, X. Guan, C. Spanos","doi":"10.48550/arXiv.2205.01951","DOIUrl":null,"url":null,"abstract":"By enabling the nodes or agents to solve small-sized subproblems to achieve coordination, distributed algorithms are favored by many networked systems for efficient and scalable computation. While for convex problems, substantial distributed algorithms are available, the results for the more broad nonconvex counterparts are extremely lacking. This paper develops a distributed algorithm for a class of nonconvex and nonsmooth problems featured by i) a nonconvex objective formed by both separate and composite objective components regarding the decision components of interconnected agents, ii) local bounded convex constraints, and iii) coupled linear constraints. This problem is directly originated from smart buildings and is also broad in other domains. To provide a distributed algorithm with convergence guarantee, we revise the powerful tool of alternating direction method of multiplier (ADMM) and proposed a proximal ADMM. Specifically, noting that the main difficulty to establish the convergence for the nonconvex and nonsmooth optimization within the ADMM framework is to assume the boundness of dual updates, we propose to update the dual variables in a discounted manner. This leads to the establishment of a so-called sufficiently decreasing and lower bounded Lyapunov function, which is critical to establish the convergence. We prove that the method converges to some approximate stationary points. We besides showcase the efficacy and performance of the method by a numerical example and the concrete application to multi-zone heating, ventilation, and air-conditioning (HVAC) control in smart buildings.","PeriodicalId":13196,"journal":{"name":"IEEE Robotics Autom. Mag.","volume":"54 1","pages":"110551"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Proximal ADMM for Nonconvex and Nonsmooth Optimization\",\"authors\":\"Yu Yang, Q. Jia, Zhanbo Xu, X. Guan, C. Spanos\",\"doi\":\"10.48550/arXiv.2205.01951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By enabling the nodes or agents to solve small-sized subproblems to achieve coordination, distributed algorithms are favored by many networked systems for efficient and scalable computation. While for convex problems, substantial distributed algorithms are available, the results for the more broad nonconvex counterparts are extremely lacking. This paper develops a distributed algorithm for a class of nonconvex and nonsmooth problems featured by i) a nonconvex objective formed by both separate and composite objective components regarding the decision components of interconnected agents, ii) local bounded convex constraints, and iii) coupled linear constraints. This problem is directly originated from smart buildings and is also broad in other domains. To provide a distributed algorithm with convergence guarantee, we revise the powerful tool of alternating direction method of multiplier (ADMM) and proposed a proximal ADMM. Specifically, noting that the main difficulty to establish the convergence for the nonconvex and nonsmooth optimization within the ADMM framework is to assume the boundness of dual updates, we propose to update the dual variables in a discounted manner. This leads to the establishment of a so-called sufficiently decreasing and lower bounded Lyapunov function, which is critical to establish the convergence. We prove that the method converges to some approximate stationary points. We besides showcase the efficacy and performance of the method by a numerical example and the concrete application to multi-zone heating, ventilation, and air-conditioning (HVAC) control in smart buildings.\",\"PeriodicalId\":13196,\"journal\":{\"name\":\"IEEE Robotics Autom. Mag.\",\"volume\":\"54 1\",\"pages\":\"110551\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Robotics Autom. Mag.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2205.01951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics Autom. Mag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.01951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

分布式算法通过使节点或代理能够解决小尺度的子问题来实现协调,从而得到许多网络系统的青睐,以实现高效和可扩展的计算。而对于凸问题,大量的分布式算法是可用的,更广泛的非凸对应物的结果是非常缺乏的。针对一类具有以下特征的非凸非光滑问题,本文提出了一种分布式算法:1)由独立和复合目标组成的非凸目标,2)局部有界凸约束,3)耦合线性约束。这个问题直接来源于智能建筑,也广泛存在于其他领域。为了提供一种具有收敛性保证的分布式算法,我们对乘法器交替方向法(ADMM)进行了改进,提出了一种近端ADMM算法。具体地说,注意到在ADMM框架内建立非凸非光滑优化的收敛性的主要困难是假设对偶更新的有界性,我们提出以折扣方式更新对偶变量。这导致建立一个所谓的充分递减和下界Lyapunov函数,这是建立收敛性的关键。证明了该方法收敛于一些近似平稳点。此外,通过数值算例和在智能建筑多区域供暖、通风和空调(HVAC)控制中的具体应用,展示了该方法的有效性和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Proximal ADMM for Nonconvex and Nonsmooth Optimization
By enabling the nodes or agents to solve small-sized subproblems to achieve coordination, distributed algorithms are favored by many networked systems for efficient and scalable computation. While for convex problems, substantial distributed algorithms are available, the results for the more broad nonconvex counterparts are extremely lacking. This paper develops a distributed algorithm for a class of nonconvex and nonsmooth problems featured by i) a nonconvex objective formed by both separate and composite objective components regarding the decision components of interconnected agents, ii) local bounded convex constraints, and iii) coupled linear constraints. This problem is directly originated from smart buildings and is also broad in other domains. To provide a distributed algorithm with convergence guarantee, we revise the powerful tool of alternating direction method of multiplier (ADMM) and proposed a proximal ADMM. Specifically, noting that the main difficulty to establish the convergence for the nonconvex and nonsmooth optimization within the ADMM framework is to assume the boundness of dual updates, we propose to update the dual variables in a discounted manner. This leads to the establishment of a so-called sufficiently decreasing and lower bounded Lyapunov function, which is critical to establish the convergence. We prove that the method converges to some approximate stationary points. We besides showcase the efficacy and performance of the method by a numerical example and the concrete application to multi-zone heating, ventilation, and air-conditioning (HVAC) control in smart buildings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auction algorithm sensitivity for multi-robot task allocation Sensor Selection for Remote State Estimation with QoS Requirement Constraints Industry 4.0: What's Next? [Young Professionals] Becoming a Plenary or Keynote Speaker in an International Robotics Conference: Perspectives From an IEEE RAS Women in Engineering Panel [Women in Engineering] Industry 4.0: Opinion of a Roboticist on Machine Learning [Student's Corner]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1