二氧化钛与紫外光光催化降解部分有机磷农药的研究

A. Petsas, M. Vagi
{"title":"二氧化钛与紫外光光催化降解部分有机磷农药的研究","authors":"A. Petsas, M. Vagi","doi":"10.5772/INTECHOPEN.72193","DOIUrl":null,"url":null,"abstract":"The photocatalytic degradation of five selected organophosphorus pesticides (OPPs), azinphos methyl, azinphos ethyl, disulfoton, dimethoate, and fenthion, has been investigated using TiO 2 (photocatalyst) and UV irradiation. The addition of H 2 O 2 (oxidant agent) into the illuminated aquatic suspensions was also surveyed. The degradation kinetics was studied under different experimental conditions such as pesticides’ and catalyst’s concentration. Experiments were performed in a Pyrex UV laboratory-constructed photoreactor equipped with 4 × 18 W low-pressure Hg lamps emitting at 365 nm (maximum intensity 14.5 mW cm −2 at distance 15 cm). The concentration of pesticides was determined by GC-NPD means. The extent of pesticide mineralization was assessed through TOC measurements. The results demonstrated that photolysis of target organophosphates in the absence of catalyst or oxidant is a slow process resulting in incomplete mineralization. Contradictory, studied pollutants were effectively degraded in the presence of TiO 2 ; evolution of inorganic hetero- atoms (SO 4 2− , PO 4 3− , NO 2 − , NO 3 − , and NH 4 + ) as final products provided evidence that pesticide deterioration occurred. The photolysis efficiencies decreased in the order: disulfoton > azinphos ethyl > azinphos methyl > fenthion > dimethoate. Furthermore, a synergistic effect was observed with the addition of H 2 O 2 in the pesticide-TiO 2 suspensions. In all cases examined, reduction process appeared to follow pseudo first-order kinetics (Langmuir-Hinshelwood model). In conclusion, both catalytic systems investigated (UV-TiO 2 and UV-TiO 2 -H 2 O 2 ) have good potential for small-scale applications. into","PeriodicalId":23104,"journal":{"name":"Titanium Dioxide - Material for a Sustainable Environment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Photocatalytic Degradation of Selected Organophosphorus Pesticides Using Titanium Dioxide and UV Light\",\"authors\":\"A. Petsas, M. Vagi\",\"doi\":\"10.5772/INTECHOPEN.72193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The photocatalytic degradation of five selected organophosphorus pesticides (OPPs), azinphos methyl, azinphos ethyl, disulfoton, dimethoate, and fenthion, has been investigated using TiO 2 (photocatalyst) and UV irradiation. The addition of H 2 O 2 (oxidant agent) into the illuminated aquatic suspensions was also surveyed. The degradation kinetics was studied under different experimental conditions such as pesticides’ and catalyst’s concentration. Experiments were performed in a Pyrex UV laboratory-constructed photoreactor equipped with 4 × 18 W low-pressure Hg lamps emitting at 365 nm (maximum intensity 14.5 mW cm −2 at distance 15 cm). The concentration of pesticides was determined by GC-NPD means. The extent of pesticide mineralization was assessed through TOC measurements. The results demonstrated that photolysis of target organophosphates in the absence of catalyst or oxidant is a slow process resulting in incomplete mineralization. Contradictory, studied pollutants were effectively degraded in the presence of TiO 2 ; evolution of inorganic hetero- atoms (SO 4 2− , PO 4 3− , NO 2 − , NO 3 − , and NH 4 + ) as final products provided evidence that pesticide deterioration occurred. The photolysis efficiencies decreased in the order: disulfoton > azinphos ethyl > azinphos methyl > fenthion > dimethoate. Furthermore, a synergistic effect was observed with the addition of H 2 O 2 in the pesticide-TiO 2 suspensions. In all cases examined, reduction process appeared to follow pseudo first-order kinetics (Langmuir-Hinshelwood model). In conclusion, both catalytic systems investigated (UV-TiO 2 and UV-TiO 2 -H 2 O 2 ) have good potential for small-scale applications. into\",\"PeriodicalId\":23104,\"journal\":{\"name\":\"Titanium Dioxide - Material for a Sustainable Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Titanium Dioxide - Material for a Sustainable Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.72193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Titanium Dioxide - Material for a Sustainable Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.72193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

采用二氧化钛(光催化剂)和紫外光照射,研究了五种有机磷农药(甲基氮磷、乙基氮磷、二硫磷、乐果和倍硫磷)的光催化降解。研究了在光照水悬浮液中加入h2o2(氧化剂)的情况。研究了不同农药浓度、催化剂浓度等实验条件下的降解动力学。实验在Pyrex UV实验室建造的光反应器中进行,配备4 × 18 W低压汞灯,发射波长为365 nm(距离为15 cm时最大强度为14.5 mW cm - 2)。采用气相色谱- npd法测定农药浓度。通过TOC测量评估农药矿化程度。结果表明,在没有催化剂或氧化剂的情况下,目标有机磷酸盐的光解是一个缓慢的过程,导致矿化不完全。矛盾的是,所研究的污染物在tio2存在下可以有效降解;无机杂原子(so4 2−、po4 3−、no2−、no3−和nh4 +)作为最终产物的演化提供了农药变质发生的证据。光解效率依次为:二硫磷>氮磷乙基>氮磷甲基>倍硫磷>乐果。此外,在农药-二氧化钛悬浮液中添加h2o2可观察到协同效应。在所有检查的情况下,还原过程似乎遵循伪一级动力学(Langmuir-Hinshelwood模型)。综上所述,所研究的两种催化体系(uv - tio2和uv - tio2 - h2o2)都具有良好的小规模应用潜力。成
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Photocatalytic Degradation of Selected Organophosphorus Pesticides Using Titanium Dioxide and UV Light
The photocatalytic degradation of five selected organophosphorus pesticides (OPPs), azinphos methyl, azinphos ethyl, disulfoton, dimethoate, and fenthion, has been investigated using TiO 2 (photocatalyst) and UV irradiation. The addition of H 2 O 2 (oxidant agent) into the illuminated aquatic suspensions was also surveyed. The degradation kinetics was studied under different experimental conditions such as pesticides’ and catalyst’s concentration. Experiments were performed in a Pyrex UV laboratory-constructed photoreactor equipped with 4 × 18 W low-pressure Hg lamps emitting at 365 nm (maximum intensity 14.5 mW cm −2 at distance 15 cm). The concentration of pesticides was determined by GC-NPD means. The extent of pesticide mineralization was assessed through TOC measurements. The results demonstrated that photolysis of target organophosphates in the absence of catalyst or oxidant is a slow process resulting in incomplete mineralization. Contradictory, studied pollutants were effectively degraded in the presence of TiO 2 ; evolution of inorganic hetero- atoms (SO 4 2− , PO 4 3− , NO 2 − , NO 3 − , and NH 4 + ) as final products provided evidence that pesticide deterioration occurred. The photolysis efficiencies decreased in the order: disulfoton > azinphos ethyl > azinphos methyl > fenthion > dimethoate. Furthermore, a synergistic effect was observed with the addition of H 2 O 2 in the pesticide-TiO 2 suspensions. In all cases examined, reduction process appeared to follow pseudo first-order kinetics (Langmuir-Hinshelwood model). In conclusion, both catalytic systems investigated (UV-TiO 2 and UV-TiO 2 -H 2 O 2 ) have good potential for small-scale applications. into
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recent Advances in TiO2 Nanotube-Based Materials for Photocatalytic Applications Designed by Anodic Oxidation Hierarchical Nanostructures of Titanium Dioxide: Synthesis and Applications Preparation of Blue TiO2 for Visible-Light-Driven Photocatalysis Novel Two-Dimensional Nanomaterial: High Aspect Ratio Titania Nanoflakes Synthetic Methods for Titanium Dioxide Nanoparticles: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1